Este artículo examina la incorporación de la ética aplicada a la inteligencia artificial (IA) en los currículos universitarios chilenos, destacando la urgencia de implementar un marco de acción integrado. Mediante un análisis documental, se evidencia que la mayoría de los programas de educación superior no declaran cursos de ética en IA en sus currículos, lo que alerta la necesidad de sistematizar esta integración institucionalmente. En respuesta, proponemos un enfoque basado en el feminismo en la ciencia y el feminismo de datos, promoviendo la inclusión de diversas perspectivas y experiencias en la enseñanza de la ética aplicada. Este marco busca mejorar la integración de la ética en el currículo y también preparar a los estudiantes para resolver dilemas éticos en contextos sociotécnicos complejos, reforzando la necesidad del razonamiento ético aplicado en la formación en disciplinas asociadas a la IA.
Angwin, J., Larson, J., Mattu, S., y Kirchner, L. (2016). Machine Bias: There’s software used across the country to predict future criminals. And it’s biased against blacks. Pro Publica. https://www.propublica.org/article/machine-biasrisk-assessments-in-criminal-sentencing.
Antony, L. (1993). “Quine as feminist: Th e radical import of naturalized epistemology”. En L. Antony y C. Witt (eds.), A mind Of One’s Own.
Arriagada-Bruneau, G. (2024) Los sesgos del algoritmo: la importancia de diseñar una inteligencia artificial ética e inclusiva. La Pollera.
Arriagada-Bruneau, G., López, C., Mendoza, M. (en prensa) Ethics of Artificial Intelligence and Information Technologies. Taylor and Francis. CRC Press.
Beauchamp, T. L. (2005). The Nature of Applied Ethics. En A Companion to Applied Ethics (pp. 1-16). John Wiley & Sons. https://doi.org/10.1002/9780470996621.ch1.
Bergenhenegouwen, G. (1987). Hidden curriculum in the university. Higher Education, 16(5), 535–543. https://doi.org/10.1007/BF00128420
Bijker, W. E. (1995). Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Sociotechnical Change. MIT Press.
Bowen, G. A. (2009). Document Analysis as a Qualitative Research Method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027.
Buolamwini, J., y Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 77-91. https://proceedings.mlr.press/v81/buolamwini18a.html.
Chopra, A. K., y Singh, M. P. (2018). Sociotechnical Systems and Ethics in the Large. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 48-53. https://doi.org/10.1145/3278721.3278740.
Costanza-Chock, S. (2020). Design Justice: Community-Led Practices to Build the Worlds We Need. MIT Press.
D’Ignazio, C., y Klein, L. F. (2020). Data Feminism. MIT Press.
Dignum, V. (2021). The role and challenges of education for responsible AI. London Review of Education, 19(1), Article 1.
Fiesler, C., Garrett, N., y Beard, N. (2020). What Do We Teach When We Teach Tech Ethics? A Syllabi Analysis. En Proceedings of the 51st ACM Technical Symposium on Computer Science Education (pp. 289-295). Association for Computing Machinery. https://doi.org/10.1145/3328778.3366825.
Garrett, N., Beard, N., y Fiesler, C. (2020). More Than ‘If Time Allows’: The Role of Ethics in AI Education. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 272-278. https://doi.org/10.1145/3375627.3375868.
Goetze, T. S. (2023). Integrating Ethics into Computer Science Education: Multi-, Inter-, and Transdisciplinary Approaches. Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, 645-651. https://doi.org/10.1145/3545945.3569792.
Gorur, R., Hoon, L., y Kowal, E. (2020). Computer Science Ethics Education in Australia – A Work in Progress. IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 945-947. https://doi.org/10.1109/TALE48869.2020.9368375.
Griffin, T. A., Green, B. P., y Welie, J. V. M. (2023). The ethical agency of AI developers. AI and Ethics. https://doi.org/10.1007/s43681-022-00256-3.
Hagendorff, T. (2020). The Ethics of AI Ethics: An Evaluation of Guidelines. Minds and Machines, 30(1), 99-120. https://doi.org/10.1007/s11023-020-09517-8.
Hamilton, M. (2019a). The Biased Algorithm: Evidence of Disparate Impact on Hispanics. American Criminal Law Review, 56(4), 1553-1577.
___. (2019b). The sexist algorithm. Behavioral Sciences & the Law, 37(2), 145-157. https://doi.org/10.1002/bsl.2406.
Haraway, D. (1988). Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective. Feminist Studies, 14(3), 575-599. https://doi.org/10.2307/3178066.
Harding, S. (1991). Whose Science? Whose Knowledge?: Thinking from Women’s Lives. Cornell UP. https://www.jstor.org/stable/10.7591/j.ctt1hhfnmg.
___. (1992). Rethinking Standpoint Epistemology: What Is “Strong Objectivity”? En Feminist Epistemologies. Routledge.
___. (1995). ‘Strong Objectivity’: A Response to the New Objectivity Question. Synthese, 104(3), 331-349.
___. (2015). Objectivity and Diversity: Another Logic of Scientific Research. University of Chicago Press. https://press.uchicago.edu/ucp/books/book/chicago/O/bo19804521.html.
Intemann, K. (2010). 25 Years of Feminist Empiricism and Standpoint Theory: Where Are We Now? Hypatia, 25(4), 778-796. https://doi.org/10.1111/j.1527-2001.2010.01138.
Longino, H. E. (1993). Feminist Standpoint Theory and the Problems of Knowledge. Signs, 19(1), 201-212.
López, C., Arriagada Bruneau, G., y Davidoff, A. (2023). ¿Cómo navegar el caminohacia la ética en IA? Bits de ciencia, 25, 36-43. http://www.dcc.uchile.cl/difusion/revista/25.
Mancilla-Caceres, J. F., y Estrada-Villalta, S. (2022). The Ethical Considerations ofAI in Latin America. Digital Society, 1(2), 16. https://doi.org/10.1007/s44206-022-00018-y.
Margolis, E. (2001). The Hidden Curriculum in Higher Education. Routledge. https://doi.org/10.4324/9780203901854.
Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501-507. https://doi.org/10.1038/s42256-019-0114-4.
Munn, L. (2023). The uselessness of AI ethics. AI and Ethics, 3(3), 869-877. https://doi.org/10.1007/s43681-022-00209-w.
Pinch, T. J., y Bijker, W. E. (1984). The Social Construction of Facts and Artefacts: Or How the Sociology of Science and the Sociology of Technology Might Benefit Each Other. Social Studies of Science, 14(3), 399-441.
Poel van de, I. (2020). Embedding Values in Artificial Intelligence (AI) Systems Minds and Machines, 30(3), 385-409. https://doi.org/10.1007/s11023-020-09537-4
Raji, I. D., Scheuerman, M. K., y Amironesei, R. (2021). You Can’t Sit With Us: Exclusionary Pedagogy in AI Ethics Education. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 515-525. https://doi.org/10.1145/3442188.3445914.
Rolin, K. (2006). The Bias Paradox in Feminist Standpoint Epistemology. Episteme: A Journal of Social Epistemology, 3(1), 125-136.
Trist, E. L. (1981). The Evolution of Socio-technical Systems: A Conceptual Framework and an Action Research Program. Ontario Ministry of Labour, Ontario Quality of Working Life Centre.
Tuovinen, L., y Rohunen, A. (2021). Teaching AI ethics to engineering students: Reflections on syllabus design and teaching methods. Proceedings of the Conference on Technology Ethics, Tethics, Turku, Finland, October, 20-22.
Williams, M. (2001). Problems of Knowledge: A Critical Introduction to Epistemology. Oxford UP.
Wylie, A. (2003). Why Standpoint Matters. En R. Figueroa & S. G. Harding (Eds.), Science and other cultures: Issues in philosophies of science and technology (pp. 26-48). Routledge. https://philarchive.org/rec/WYLWSM.
Young, I. M. (1989). Polity and group difference: A critique of the ideal of universal citizenship. Ethics, 99(2), 250-274.