Tratamiento específico COVID-19

Authors

  • Natalia Olivares Estudiante de Medicina, Universidad de Chile
  • Rocío González Estudiante de Medicina, Universidad de Chile

Abstract

En medio de la pandemia causada por SARS-CoV-2, aún no existen tratamientos específicos validados para enfrentarla. Como consecuencia, se ha intentado utilizar otros fármacos mientras se descubre tanto una vacuna para prevenir COVID-19, como un medicamento que sea efectivo y seguro.

Actualmente se están llevando a cabo una serie de ensayos clínicos sobre diversos tratamientos sugerentes, de gran importancia para el conocimiento y comprensión del SARS-Cov-2.

En Chile se ha estado prefiriendo como una de las primeras terapias, al igual que en otros países del mundo, la hidroxicloroquina. Sin embargo, esto ha ido variando a lo largo del tiempo debido a los estudios publicados constantemente, se ha utilizan también antivirales como Lopinavir/ritonavir e incluso el anticuerpo monoclonal para artritis reumatoide Tocilizumab y transfusión de plasma.

Se debe evaluar el tratamiento para cada paciente y monitorear constantemente distintos parámetros para observar evolución y evitar posibles efectos adversos o fallecimiento.

El objetivo de esta revisión es informar y entregar evidencia sobre los distintos tratamientos actualmente discutidos y su efectividad en medio de esta pandemia o en otras situaciones pasadas relevantes. Dentro de las alternativas se encuentran antipalúdicos, antivirales y terapias inmunológicas como plasma convaleciente, cada una con sus ventajas y riesgos, pero ninguna en la que se haya comprobado su efectividad por investigaciones que arrojen resultados estadísticamente significativos.

Keywords:

COVID-19, tratamiento, fármacos, antivirales, SARS-CoV-2

References

(1) Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). BioScience Trends. doi:10.5582/bst.2020.01020.

(2) Treatment. In: Kamps BS, Hoffmann C, eds. Covid Reference. Website www.covidreference.com. 2020.

(3) Lu H, Stratton CW, Tang YW. Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle. J Med Virol. 2020. doi: 10.1002/jmv.25678

(4) China puts 245 COVID-19 patients on convalescent plasma therapy. News release. Xinhua. February 28, 2020. Accessed March 10, 2020. http://www.xinhuanet.com/english/2020-02/28/c_138828177.htm.

(5) Choudhary R, Sharma AK, Choudhary R. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect. 2020 Apr 22;35:100684. doi: 10.1016/j.nmni.2020.100684. Epub ahead of print. PMID: 32322397; PMCID: PMC7175902.

(6) Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005 Aug 22; 2: 69. doi: 10.1186/1743-422X-2-69. PMID: 16115318; PMCID: PMC1232869.

(7) Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22; 395(10224): 565-574. doi: 10.1016/S0140-6736(20)30251-8. Epub 2020 Jan 30. PMID: 32007145; PMCID: PMC7159086.

(8) Plantone, D., Koudriavtseva, T. Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. Clin Drug Investig 38, 653–671 (2018). https://doi.org/10.1007/s40261-018-0656-y

(9) Xueting Yao, Fei Ye, Miao Zhang, Cheng Cui, Baoying Huang, Peihua Niu, Xu Liu, Li Zhao, Erdan Dong, Chunli Song, Siyan Zhan, Roujian Lu, Haiyan Li, Wenjie Tan, Dongyang Liu, In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clinical Infectious Diseases, , ciaa237, https://doi.org/10.1093/cid/ciaa237

(10) Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr. 2020 May-Jun;14(3): 241-246. doi: 10.1016/j.dsx.2020.03.011. Epub 2020 Mar 26. PMID: 32247211; PMCID: PMC7102587.

(11) Pagliano P, Piazza O, De Caro F, Ascione T, Filippelli A. Is Hydroxychloroquine a possible post-exposure prophylaxis drug to limit the transmission to health care workers exposed to COVID19? Clin Infect Dis. 2020 Mar 24: ciaa320. doi: 10.1093/cid/ciaa320. Epub ahead of print. PMID: 32211764; PMCID: PMC7184439.

(12) Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci. 2020 Apr 21; 50(SI-1): 611-619. doi: 10.3906/sag-2004-145. PMID: 32293834; PMCID: PMC7195979.

(13) US Food and Drug Administration. Emergency use authorization: coronavirus disease 2019 (COVID-19) EUA information. https://www.fda.gov/emergency-preparedness-and-response/ mcm-legal-regulatory-and-policy-framework/emergency-useauthorization#covidtherapeutics (accessed May 15, 2020).

(14) Choudhary R, Sharma AK, Choudhary R. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect. 2020 Apr 22; 35: 100684. doi: 10.1016/j.nmni.2020.100684. Epub ahead of print. PMID: 32322397; PMCID: PMC7175902.

(15) Chan KS Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Medical Journal. 2003; 9: 399–406.

(16) Traebert M, Dumotier B, Meister L, Hoffmann P, Dominguez-Estevez M, Suter W. Inhibition of hERG K+ currents by antimalarial drugs in stably transfected HEK293 cells. Eur J Pharmacol 2004; 484: 41–48.

(17) Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; published online March 25. DOI:10.1001/jamacardio.2020.0950

(18) Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; published online March 27. DOI:10.1001/jamacardio.2020.1017

(19) Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT Interval Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. Published online May 01, 2020. doi:10.1001/jamacardio.2020.1834

(20) Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003: 63: 769-802.

(21) Cao B, Wang Y, Wen D, et al. A trial of Lopinavir–ritonavir in adults hospitalized with severe Covid-19. New Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2001282

(22) Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59(3): 252-256. doi:10.1136/thorax.2003.012658

(23) Warren, T., Jordan, R., Lo, M. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016). https://doi.org/10.1038/nature1718024.

(24) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro Cell Research (2020) 0:1–3; https://doi.org/10.1038/s41422-020-0282-0

(25) Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe covid-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020. www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31022-9/fulltext

(26) De Clercq, E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J. 14, 3962–3968 (2019).

(27) Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.

(28) Chen, C. et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. bioRxiv preprint. doi: https://doi.org/10.1101/2020.03.17.20037432 (2020)

(29) Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomized trial. Lancet 2008; 371(9617): 987–97.

(30) Li G., De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) Nat. Rev. Drug Discov. 2020; 19: 149–150. doi: 10.1038/d41573-020-00016-0. [PubMed] [CrossRef] [Google Scholar] [Ref list]

(31) Ahsan W, Javed S, Bratty MA, Alhazmi HA, Najmi A. Treatment of SARS-CoV-2: How far have we reached?. Drug Discov Ther. 2020; 14(2): 67-72. doi:10.5582/ddt.2020.03008

(32) News: Abidol and darunavir can effectively inhibit coronavirus http://www.sd.chinanews.com/2/2020/0205/70145.html (accessed February 21, 2020) (in Chinese).

(33) Riva A, Conti F, Bernacchia D, et al. Darunavir no previene la infección por SARS-CoV-2 en pacientes con VIH [publicado en línea antes de la impresión, 20 de abril de 2020]. Pharmacol Res. 2020; 157: 104826. doi: 10.1016 / j.phrs.2020.104826

(34) Costanzo M, De Giglio MAR, Roviello GN. SARSCoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and Other Drugs for the Treatment of the New Coronavirus. Curr Med Chem. 2020.

(35) Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an Il-6 signal trasnduced, gp130. Cell 1990; 63: 1149–57.

(36) Current concepts in the diagnosis and management of cytokine release syndrome. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA, Mackall CL Blood. 2014 Jul 10; 124(2): 188-95[PubMed] [Ref list]).

(37) Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020; 117(20): 10970-10975. doi:10.1073/pnas.2005615117

(38) Hoeltzenbein M, Beck E, Rajwanshi R, et al. Tocilizumab use in pregnancy: Analysis of a global safety database including data from clinical trials and post-marketing data. Semin Arthritis Rheum. 2016; 46(2): 238-245. doi:10.1016/j.semarthrit.2016.05.004

(39) Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol. 2017; 29: 491-498.

(40) Hung IFN, To KKW, Lee C-K, et al. Hyperimmune iv immunoglobulin treatment: A multicenter double-blind randomized controlled trial for patients with severe 2009 influenza a [H1N1] infection. Chest 2013; 144: 464–73.

(41) Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis. 2005; 24: 583-91.

(42) Li T, Lu H, Zhang W. Clinical observation and management of COVID-19 patients. Emerg Microbes Infect. 2020 Dec; 9[1]: 687-690. doi: 10.1080/22221751.2020.1741327

(43) Woodruff RK, Grigg AP, Firkin FC, Smith IL. Fatal thrombotic events during treatment of autoimmune thrombocytopenia with intravenous immunoglobulin in Journal Pre-proof Journal Pre-proof elderly patients. Lancet [1986] 2[8500]: 217–8. doi:10.1016/S0140-6736[86]92511-0.

(44) Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22; 395(10224): 565-574. doi: 10.1016/S0140-6736(20)30251-8. Epub 2020 Jan 30. PMID: 32007145; PMCID: PMC7159086.

(45) Sallard, E., Lescure, F.-X., Yazdanpanah, Y., Mentre, F., Peiffer-Smadja, N., for the C-20-15 DisCoVeRy French Steering Committee, Type 1 interferons as a potential treatment against COVID-19, Antiviral Research, https://doi.org/10.1016/j.antiviral.2020.104791

(46) Sallard, E., Lescure, F.-X., Yazdanpanah, Y., Mentre, F., Peiffer-Smadja, N., for the C-20-15 DisCoVeRy French Steering Committee, Type 1 interferons as a potential treatment against COVID-19, Antiviral Research, https://doi.org/10.1016/j.antiviral.2020.104791

(47) Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006; 3(9): e343. doi:10.1371/journal.pmed.0030343

(48) Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11(1): 222. Published 2020 Jan 10. doi:10.1038/s41467-019-13940-6

(49) Channappanavar R, Fehr AR, Zheng J, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019; 130(9): 3625‐3639. Published 2019 Jul 29. doi:10.1172/JCI126363

(50) Siddiqi HK, Mehra disease MR COVID-19 in native and immunosuppressed states: a proposal for clinical-therapeutic statistics. J. Heart and lung transplant. 2020 doi: 10.1016 / j.healun.2020.03.012. [CrossRef] [Google Scholar].

(51) Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A, Jusko WJ. Receptor-mediated pharmacokinetics and pharmacodynamics of interferon-beta1a in monkeys. J Pharmacol Exp Ther. 2003;306(1):262‐270. doi:10.1124/jpet.103.049502

(52) Marano G., Vaglio S., Pupella S., Facco G., Catalano L., Liumbruno G.M. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016; 14: 152–157. doi: 10.2450/2015.0131-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar].

(53) Burnouf T., Seghatchian J. Ebola virus convalescent blood products: Where we are now and where we may need to go. Transfus Apher Sci. 2014; 51: 120–125. doi: 10.1016/j.transci.2014.10.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar].

(54) van Griensven J., Edwards T., de Lamballerie X., Semple M.G., Gallian P., Baize S. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med. 2016;374:33–42. doi: 10.1056/NEJMoa1511812. [PMC free article] [PubMed] [CrossRef] [Google Scholar

(55) Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.S. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211: 80–90. doi: 10.1093/infdis/jiu396. [PMC free article] [PubMed] [CrossRef] [Google Scholar].

(56) Yeh K.-M., Chiueh T.-S., Siu L.K., Lin J.-C., Chan P.K.S., Peng M.-Y. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. 2005; 56: 919–922. doi: 10.1093/jac/dki346. [PMC free article] [PubMed] [CrossRef] [Google Scholar].

(57) Chan K.K.C., Lee K.L., Lam P.K.N., Law K.I., Joynt G.M., Yan W.W. Hong Kong’s experience on the use of extracorporeal membrane oxygenation for the treatment of influenza A (H1N1) Hong Kong Med J. 2010; 16: 447–454. [PubMed] [Google Scholar], https://jamanetwork.com/journals/jama/fullarticle/2763983?resultClick=1,Mair -Jenkins et al 2015; Wu et al. , 2015.

(58) Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) MedRxiv. 2020 doi: 10.1101/2020.02.10.20021832. [CrossRef] [Google Scholar]).

(59) Lünemann J.D., Nimmerjahn F., Dalakas M.C. Intravenous immunoglobulin in neurology--mode of action and clinical efficacy. Nat Rev Neurol. 2015; 11: 80–89. doi: 10.1038/nrneurol.2014.253. [PubMed] [CrossRef] [Google Scholar].

(60) Ou, X., Liu, Y., Lei, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620 (2020). https://doi.org/10.1038/s41467-020-15562-9

(61) Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020; 117(17): 9490‐9496. doi:10.1073/pnas.2004168117

(62) Leider JP, Brunker PA, Ness PM. Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion. 2010; 50(6): 1384-1398. doi:10.1111/j.1537-2995.2010.02590.x

(63) Amanat, F., Stadlbauer, D., Strohmeier, S. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med (2020). https://doi.org/10.1038/s41591-020-0913-5