El coronavirus del síndrome respiratorio agudo grave tipo 2 (SARS-CoV-2), responsable de la enfermedad por coronavirus 2019 (COVID-19), tiene similitudes estructurales y comparables mecanismos de patogenia con el virus del SARS 2003 (SARS-CoV-1). En esta revisión buscamos identificar las características y propiedades de la glicoproteína estructural “Spike” (proteína S) involucrada en los mecanismos por los que SARS-CoV-2 ingresa a la célula, poniendo énfasis en las modificaciones del procesamiento enzimático y los cambios conformacionales que justifican la función de la proteína S en el reconocimiento con el receptor y la fusión de membrana (adsorción y penetración). También, nos proponemos indagar las diferencias que expliquen en parte el comportamiento diferencial de ambos coronavirus mencionados, y las implicancias de la mayor afinidad que tiene SARS-CoV-2 por el receptor Enzima Convertidora de Angiotensina 2 (ACE2) en comparación a SARS-CoV-1. La importancia del conocimiento estructural y funcional de la proteína radica ante todo en su utilidad para la identificación de segmentos potenciales para el desarrollo de vacunas específicas y de fármacos que intervengan en el proceso de infección.
(1) Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 418-423.
(2) Malik YA. Properties of Coronavirus and SARS-CoV- 2. Malays J Pathol 2020; 42(1): 3–11.
(3) Woo P, Lau S, Lam C, Lau C, Tsang A, Lau J et al. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus. J Virol. 2012; 86(7): 3995-4008.
(4) Fan Y, Lai Y, Han T, Li Z, Zhou P et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-432.
(5) Wat D. The common cold: a review of the literature. Eur J Intern Med. 2004; 15(2): 79-88.
(6) Koh D, Sng J. Lessons from the past: perspectives on severe acute respiratory syndrome. Asia Pac J Public Health. 2010; 22(3 Suppl): 132s‐136s.
(7) Cui J, Li F, Shi Z. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2018; 17(3): 181-192.
(8) Elena S, Sanjuán R. Adaptive Value of High Mutation Rates of RNA Viruses: Separating Causes from Consequences. J Virol. 2005; 79(18): 11555-11558.
(9) Duffy S. Why are RNA virus mutation rates so damn high?. PLoS Biol. 2018; 16(8): e3000003.
(10) Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727-733.
(11) Tortorici M, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019; 93-116.
(12) Rabaan A, Al-Ahmed S, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS- COV: A comparative overview. Infez Med. 2020 Ahead Of Print Jun 1; 28(2): 174-184.
(13) Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020 July-August; 14(4): 407–412.
(14) Tilocca B, Soggiu A, Sanguinetti M, Babini G, De Maio F, Britti D et al. Immunoinformatic analysis of the SARS- CoV-2 envelope protein as a strategy to assess cross- protection against COVID-19. Microbes Infect. May-Jun 2020; 22(4-5): 182-187.
(15) Walls A, Park Y, Tortorici M, Wall A, McGuire A, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Apr; 181(2): 281-292.e6.
(16) Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016; 3(1): 237–261.
(17) Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang Wet al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.2020; 579(7798): 270-273.
(18) Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2): 185-192.
(19) Wan Y, Shang J, Graham R, Baric R, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020; 94(7).
(20) Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H et al.Structural basis of receptor recognition by SARS-CoV-2.Nature. 2020; 581(7807): 221-224.
(21) Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh CAbiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science.2020; 367(6483): 1260-1263.
(22) Okba N, Müller M, Li W, Wang C, GeurtsvanKesselC, Corman V et al. Severe Acute Respiratory SyndromeCoronavirus 2−Specific Antibody Responses inCoronavirus Disease Patients. Emerg. Infect. Dis.2020; 26(7): 1478-1488.
(23) Sivaraman H, Yin E, Choong Y, Gavor E, SivaramanJ. Structural Basis of the SARSCoV-2/SARS-CoVReceptor Binding and Small-Molecule Blockers asPotential Therapeutics. Annu Rev Pharmacol Toxicol. 2020 Jun; 61(1).
(24) Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S et al.Inhibition of SARS-CoV-2 (previously 2019-nCoV)infection by a highly potent pan-coronavirus fusioninhibitor targeting its spike protein that harbors a highcapacity to mediate membrane fusion. Cell Res. 2020Apr; 30(4): 343-355.
(25) Ou X, Liu Y, Lei X, Li P, Mi D, Ren L et al.Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar; 11(1): 1620.
(26) Pillay T. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J Clin Pathol.2020 Jul; 73(7): 366-369.
(27) Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells.Mol Cell. 2020 May; 78(4): 779-784.e5.
(28) Lokman S, Rasheduzzaman M, Salauddin A, Barua R,Tanzina A, Rumi M et al. Exploring the genomic andproteomic variations of SARS-CoV-2 spike glycoprotein:A computational biology approach. Infect Genet Evol.2020 Oct; 84: 104389.
(29) Hassanzadeh K, Perez Pena H, Dragotto J, BuccarelloL, Iorio F, Pieraccini S et al. Considerations around the SARS-CoV-2 Spike Protein with Particular Attention to COVID-19 Brain Infection and Neurological Symptoms. ACS Chem Neurosci. 2020 Jul.
(30) Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020; 181(4): 894-904.e9.
(31) Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-574.
(32) Korber B, Fischer W, Gnanakaran S, Yoon H, Theiler J,Abfalterer W et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of theCOVID-19 Virus. Cell. 2020.
(33) Motley M, Bennett-Guerrero E, Fries B, Spitzer E. Review of Viral Testing (Polymerase Chain Reaction) and Antibody/Serology Testing for Severe Acute Respiratory Syndrome-Coronavirus-2 for the Intensivist. Crit Care Explor. 2020; 2(6): e0154.