Desarrollo de vacunas para COVID-19

Autores/as

  • A. Liberona Estudiante de Medicina, Universidad de Chile
  • M. Albornoz Estudiante de Medicina, Universidad de Chile
  • D. Rivera Estudiante de Medicina, Universidad de Chile
  • E. Grenett Estudiante de Medicina, Universidad de Chile

Resumen

COVID-19 es el nombre dado a la enfermedad causada por el coronavirus SARS-CoV-2, surgida a finales del 2019 en China cuya propagación ha generado una pandemia. El desarrollo rápido de una vacuna es una posible vía para su control. El objetivo de esta revisión es dar una idea general acerca de las plataformas que se están usando para el desarrollo de vacunas contra SARS-CoV-2. Se mencionan además aspectos claves de la inmunopatogenia y las similitudes moleculares con SARS-CoV que han permitido redirigir ensayos pre-desarrollados, a SARS-CoV-2. Para ello se buscaron artículos en PubMED con las palabras Vaccine, SARS-CoV-2 y COVID-19 entre mayo y octubre de 2020. Se consultó también el sitio Biorender COVID-19 Vaccine & Therapeutics Tracker hasta el 6 de octubre de 2020 para obtener información actualizada del estado de desarrollo de cada vacuna. Las plataformas más utilizadas hasta ahora son: vacunas basadas en virus vivos-atenuados, en subunidades proteicas, vectores de adenovirus y ácidos nucleicos. A la fecha hay más de 50 vacunas testeándose en ensayos clínicos; un total de ocho modelos han publicado sus resultados de fases clínicas I y/o II y todas han mostrado efectividad creando anticuerpos en personas vacunadas. Existen aún interrogantes, tal como la bioseguridad de las posibles vacunas, la capacidad de desarrollo industrial, el tiempo de desarrollo para poder controlar la pandemia y la capacidad de producir suficiente para todo el mundo, problemas que se ven incrementados por la presión de controlar la pandemia por SARS-CoV-2.

Palabras clave:

SARS-CoV-2, COVID-19, vacuna

Referencias

(1) Zhou, L. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. (2020). doi:10.1056/NEJMoa2001316

(2) World Health Organization. WHO DirectorGeneral’s opening remarks at the media briefing on COVID-19 - 11 March 2020. (2020). Available at: https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-mediabriefing-on-covid-19---11-march-2020. (Accessed: 20th May 2020)

(3) Padron-regalado, E. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infect. Dis. Ther. (2020). doi:10.1007/s40121-020-00300-x

(4) Ralph, R. et al. 2019-nCoV ( Wuhan virus ), a novel Coronavirus : human-to-human transmission , travel-related cases , and vaccine readiness. J. Infect. Dev. Ctries. 3–18 (2020). doi:10.3855/jidc.12425

(5) Ahn, D. et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. 30, 313–324 (2020).

(6) Amanat, F. & Krammer, F. Perspective SARSCo V-2 Vaccines: Status Report. Immunity 1–7 (2020). doi:10.1016/j.immuni.2020.03.007

(7) Wanga, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. (2020). doi:10.1038/s41467-020-16256

(8) Jin, Y. et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 1–17 (2020).

(9) Imai, Y., Kuba, K. & Penninger, J. M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp. Phisiology 543–548 (2008). doi:10.1113/expphysiol.2007.040048

(10) Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

(11) Zheng, M. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 7–9 (2020). doi:10.1038/s41423-020-0402-2

(12) Chen, W.-H., Strych, U., Hotez, P. J. & Bottazzi, M. E. The SARS-CoV-2 Vaccine Pipeline: an Overview. Hot Top. Trop. Med. 1–4 (2020).

(13) Wu, S.-C. Progress and Concept for COVID-19 Vaccine Development. Biotechnol. J. 2, (2020).

(14) Chen, J.-W. & Chen, J. Potential of live pathogen vaccines for defeating the COVID- 19 pandemic: history and mechanism. J. Med. Virol. (2020). doi:10.1002/jmv.25920

(15) Urbiztondo, L., Borras, E. & Mirada, G. Vacunas contra el coronavirus. Vacunas Investig. y práctica (2020). doi:10.1016/j.vacun.2020.04.002

(16) Wang, F., Kream, R. M., Stefano, G. B. & Corresponding. An Evidence Based Perspective on mRNA-SARS- CoV-2 Vaccine Development. Med. Sciense Monit. Int. Med. jounal Exp. Clin. Res. 1–8 (2020). doi:10.12659/MSM.924700

(17) Jackson, L. A. et al. An mRNA Vaccine against SARS-CoV-2. N. Engl. J. Med. (2020). doi:10.1056/NEJMoa2022483

(18) Zhu, F. et al. Articles Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised , double-blind , placebocontrolled , phase 2 trial. Lancet 6736, (2020).

(19) Folegatti, P. M. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 : a preliminary report of a phase 1 / 2 , single-blind , randomised controlled trial. Lancet 396, 467–478 (2020).

(20) Sinovac Biotech Ltd. Sinovac Announces Positive Preliminary Results of Phase I/II Clinical Trials for Inactivated Vaccine Candidate Against COVID-19. (2020). Available at: https://bwnews.pr/39qcuKI. (Accessed: 25th July 2020)

(21) Mulligan, M. J. et al. Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report. 1–16 (2020). doi:https://doi.org/10.1101/2020.06.30.20142570

(22) Logunov D, Dolzhikova I, Zubkova O, Tukhvatullin A, Shcheblyakov D, Dzharullaeva A et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, nonrandomised phase 1/2 studies from Russia. The Lancet. 2020.

(23) Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes. JAMA. 2020; 324(10): 951.

(24) Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot A et al. Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine candidate: interim results of a phase 1/2a, double-blind, randomized, placebo-controlled trial. 2020.

(25) Alvarez-moreno, C. A. & Rodríguezmorales, A. J. Testing Dilemmas_ Post negative, positive SARS-CoV-2 RT-PCR – is it a reinfection? Travel Med. Infect. Dis. (2020). doi:10.1016/j.tmaid.2020.101743

(26) Law, S., Leung, A. and Xu, C., 2020. Is reinfection possible after recovery from COVID-19?. Hong Kong Medical Journal, 26(3), pp.264-265.

(27) Akdis, M. et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Eur. J. allergy Clin. Immunol. 0–3 (2020). doi:10.1111/all.14364

(28) Duan, K. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceeding Natl. Acad. Sci. United States Am. (2020). doi:10.1073/pnas.2004168117

(29) Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2019, (2019).

(30) Morens, D. M. Antibody-Dependent Enhancement of Infection and the Pathogenesis of Viral Disease. Clin. Infect. Dis. 500–512 (1994).

(31) Hohdatsu, T. et al. A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch. Virol. 207–217 (1991).

(32) Vennema, H. et al. Early Death after Feline Infectious Peritonitis Virus Challenge due to Recombinant Vaccinia Virus Immunization. J. Virol. 64, 1407–1409 (1990).

(33) Wang, S. et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 451, 208–214 (2014).

(34) Lindsley, A. W. et al. Eosinophil Responses During COVID-19 Infections and Coronavirus Vaccination. J. Allergy Clin. Immunol. (2020). doi:10.1016/j.jaci.2020.04.021

(35) Hotez, P. J., Bottazzi, M. E. & Corry, D. B. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-induced Immune Enhancement. Microbes Infect. (2020). doi:10.1016/j.micinf.2020.04.005

(36) Shvedoff, R. A. & Stewart, C. E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (rs) virus infection in children previously vaccinated with an inactivated rs virus vaccine. Am. J. Epidemiol. 88, 405–421 (1969).

(37) Bolles, M. et al. A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge . J. Virol. 85, 12201–12215 (2011).

(38) Liu, L. et al. Anti – spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCL insight 1–19 (2019).

(39) Pawelec, G. & Weng, N. Can an effective SARS-CoV-2 vaccine be developed for the older population? Immun. Ageing 2–4 (2020).

(40) Cohen, J. Vaccine designers take first shots at COVID-19. Science (80). 368, 14–16 (2020).

(41) Eyal, N., Lipsitch, M. & Smith, P. G. Human Challenge Studies to Accelerate Coronavirus Vaccine Licensure. J. Infect. Dis. 1–5 (2020). doi:10.1093/infdis/jiaa152

(42) Graepel, K. W., Kochhar, S., Clayton, E. W. & Edwards, K. E. Balancing Expediency and Scientific Rigor in SARS-CoV-2 Vaccine Development. Infect. Dis. Soc. Am. (2020). doi:https://doi.org/10.1093/infdis/jiaa234

(43) Inovio Pharmaceuticals. Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800. (2020). Available at: http://ir.inovio.com/newsreleases/news-releases-details/2020/InovioAccelerates-Timeline-for-COVID-19-DNA-VaccineINO-4800/default.aspx. (Accessed: 20th May 2020).

(44) Khamsi, R. CAN THE WORLD MAKE ENOUGH CORONAVIRUS VACCINE? Nature (2020). doi:10.1038/d41586-020-01063-8