BASES GEOMORFOLOGICAS PARA UNA DIVISION DE LAS COSTAS DE CHILE

por José F. Araya-Vergara
Departamento de Geografía U. de Chile

1. ANTECEDENTES

Entre los campos de investigación particularmente enfatizados por la Comisión de Geomorfología Costera de la Unión Geográfica Internacional está el de sistema de clasificación de costas, porque en los trabajos taxonómicos que han aparecido hasta la fecha es difícil poder comprender las razones de la distribución de los diferentes tipos de costas y la tendencia de su evolución. Esto ha sido claramente expresado por V. F. Yakovlev, miembro regular de la Comisión.

Por otra parte, la Asociación Internacional para el estudio del Cuaternario (1974) determinó —como una de las tareas de su Comisión Linenal— promover la investigación para definir líneas de referencia, en relación con las investigaciones de Geomorfología Histórica.

Dentro de estos grandes objetivos, y en la necesidad de tener una división funcional para la costa de Chile, serán planteadas en segunda las bases geomorfológicas para dividir el litoral chileno en secciones que puedan llevar una denominación descriptiva y genética a la vez.

2. TRABAJOS ANTERIORES

Son varios los trabajos dedicados total o parcialmente a la costa de Chile, pero aquí sólo se hará una revisión de aquellos que tengan relevancia taxonómica.

Desde el punto de vista de la relación planetaria de las costas occidentales de Sudamérica, vale la pena recordar a E. Suárez (1888-1900), que compara las orillas oceánicas desde el punto de vista tectoestructural, y con el fin de sacar relaciones filogenéticas regionales. Establece una oposición entre el estilo atlántico y el estilo pacífico. El primero, con costas transversales a la estructura, cortadas por ríos, fracturas borderas de horstas y fallas tabulares. El segundo, con...
costas paralelas a las estructuras. Mientras para el Pacífico Occidental la estructura arqueada es característica, ello es menos neto en la costa oeste de Sudamérica. El golfo de California con respecto al valle de San Joaquín y de Sacramento, así como el de Corcovado con respecto al Llano Central de Chile, ocupan una fosa entre la cadena costera y la principal.

VON RICHTHOfen (en suess, 1900), llama la atención acerca de que la cuenca del Pacífico está bordeada de fracturas esclavizadas en una muy grande amplitud. Por lo tanto, la contribución de suess parece fundamental para colocar a la costa de Chile en el contexto de sus relaciones filogenéticas globales con otras costas del mundo o simplemente del Pacífico, ya que permite tener en cuenta —entre los fundamentos taxonómicos— el papel del diatofismo y la epirogénesis planetarios.

L. SUNDT (1903) establece una diferencia entre la costa al N y al S del paralelo 41,5°S (aproximadamente en el canal de Chacao), notando que la configuración de ambas partes debe sus diferencias fundamentales a tres factores que han influido al S del paralelo 41,5: los ventisqueros, los ríos torrentosos y el hundimiento; y a dos factores que han afectado al sector norte: relleno de antiguos golfo y bahías por sedimentos de transgresión y la acción posterior del oleaje sobre esta herencia. Dichas diferencia de factores ha dado, para este autor, la posibilidad de distinguir una costa relativamente pareja con ensenadas abiertas y otra accidentada con fiordos canales e islas. Sobre esta base ha sido descrita tradicionalmente la costa de Chile. Sin embargo, desde el punto de vista genético, tiende a ligarse la configuración necesariamente con fenómenos de sollevamiento o de hundimiento, lo que, a la luz de las investigaciones actuales, resulta peligroso e inadecuado a la realidad.

J. BRÜGGEN (1950 a y b) divide la costa de Chile en los siguientes sectores: Arica-Chañaral; Chañaral-Coquimbo; Chile Central; Concepción y Arauco; Valdivia y Llanquihue; golfo situados al E de Chiloé, y la costa de Patagonia. Este es el trabajo más extenso y sistemático que se conoce sobre las costas de Chile y sus aportes son importantes, porque se apartan del esquema clásico que liga una determinada configuración de las costas con hundimientos o sollevamientos, como se supone del cuadro propuesto por SUNDT. Sin embargo, como en este último caso, no se tienen en cuenta los procesos del Cuaternario Reciente debidos a la influencia de los últimos movimientos eustácticos. Por ello, y por no advertirse puntos de vista claros en la división, el esquema de BRÜGGEN parece confuso, porque cuesta encontrar en él justificaciones taxonómicas de los límites propuestos. A pesar de esto, estas descripciones han sido ampliamente consideradas en el presente trabajo, porque derivan de observaciones científicas serias que proporcionan aportes de incuestionable valor.

H. VALENTIN (1954), en un mapa fuera de texto ("Die Gegenwärtige Küstengestalt der Erde", 1951), distingue para las costas de Chile las siguientes zonas:

— Zona de costas de regiones áridas (entre 18 y 30°S aprox.).
—Zona de costas sumergidas de acción fluvial (58 a 42°S aprox.).

—Zona de costas sumergidas de acción glacial (62° al S). Aquí hay un criterio taxonómico claro: el tipo de acción continental y la posición relativa con respecto a las variaciones del nivel del mar. Para Valentin, estas últimas implican un retroceso de la costa por avance del mar (Küsten/Gletscherküsten), mostrando en su mapa dos grandes porciones:

—Arica-P. Montt: costas sumergidas de acción fluvial en plegamientos jóvenes (valles sumergidos entre 20 y 30°S). (Cala, Canales y Valles Küsten).

Todas resultan costas sumergidas (Untergletscher).

A pesar del esfuerzo sistemático hecho aquí, no se puede emplear esta división sin correr serios riesgos. Es evidente que la acción continental es importante en las costas de Chile, pero este hecho se mezclaba con la variación en la posición relativa del nivel del mar, sin establecer qué ha ocurrido en la costa de regiones aridas. Al parecer también un hundimiento, por pertenecer ella al sector Arica-P. Montt. La información que utilizó Valentin para establecer las costas de hundimiento fue la de subocéanos, en el que no se ha comentado. No es exacto, en segundo, que tomar Arica y P. Montt se trate de interferencia de plegamientos jóvenes en el ambiente costero, aunque existan tales. Se ve entonces que las nociones cartográficas de Valentin derivan de una generalización inadecuada, que no la es tanto en la parte sur del país.

J. T. McGill (1958) publicó un mapa de las costas del mundo 1:25.000.000, en que se consideran los factores de la corriente costera. Este mapa no pudo ser analizado en lo que respecta a Chile, porque sólo se dispuso del artículo y no del material fuera de texto, aunque éste es descrito ampliamente por R. C. F. Bird (1969).

En el Atlas Físico Geográfico del Mundo (ACADEMY OF SCIENCES U.S.A. & MAIN ADMINISTRATION OF CARTOGRAPHY, 1957, 1964), publicado en ruso, es posible destacar cinco sectores de la costa chilena, que se emplean dentro de los grupos 1 y 3 de la clasificación alu usada:

—33°54′ aprox. — Canal de Chacao: Medio Tipo: abrasivo — acumulativos de bahía.

Aquí se parte, al parecer, de los criterios de Culliver y de Sheppard, que
tienden a establecer el grado de acción del mar frente a los factores continentes. Si la división parece adecuada para la parte del sur del territorio, no lo es para la norte, porque se asocia la configuración de la costa con el grado de influencia marina. Si en las costas norte lo esencial es el oleaje y en la Patagonia, la estructura, se podría pensar que —de no mediar la acción del oleaje— la costa del norte sería mucho más accidentada, y en cierto modo parecida a la de Patagonia. Esta crítica, sin embargo, es válida para la consideración del grupo, porque en lo que respecta al subgrupo o tal tipo, los hechos se asemejan con la denominación propuesta. Aplicando los grupos y tipos a la costa norte, la división sonvítica resulta buena.

X. PARSONS (1970) describe una buena parte de la costa del Norte Chico, entre La Serena y el río Aconcagua. Hace una sistemática de división especialmente lo que él llama la costa de rocas (entre Bahía El Teniente y el Aconcagua), designando así a la parte con un aplastamiento corte incrustado ma-

vamente hacia el mar, extendido y limitado hacia abajo por un amontillado vivo o muerto sobre el cual se pueden escalar rocas. Entre Bahía El Teniente (31°58') y el Aconcagua distingue 3 sectores:

— Bahía El Teniente-Bahía Chiguaco (31°45'S) : costa en general vertical con movimientos ecuatoriales recientes

— Bahía Chiguaco-Cachagua (32°25'S) : con sistema complejo de fracturas más arrugas y bahías amplias.

— Cachagua-R. Aconcagua (32°50'S) : retracción de costa rocosa con acan-

tilado blando; bahías amplias y campos de dunas.

Sin adaptar exactamente los límites propuestos por Parsons, su trabajo ha servido para medir el tratamiento de la costa del Norte Chico, donde el sector Bahía El Teniente-Bahía Chiguaco parece extenderse mejor desde Punta Longa de Vaca hasta Punta Loberia. La misma carta georronológica de Parsons no ofrece diferencias importantes al N de El Teniente.

En 1971 el autor presentó a la Asociación de Geógrafos de Chile su primer ensayo de división de la costa de este país (ARAN 31, n° 1971), cuya fundamentación es el tema del presente trabajo, que incluye modificaciones de algunas denominaciones existentes propuestas.

5. APLICACION DE LAS CLASIFICACIONES EXISTENTES

Al dividir las costas chilenas surgió la necesidad de utilizar un criterio taxonómico determinado, dado los antecedentes existentes por los trabajos anteriores. Por ello se hará en seguida una sencilla revisión de las clasificaciones de costas aparecidas desde el siglo pasado hasta ahora, con el fin de acomodar criterios que sirvan para la realidad chilena.

Como se desprende de más arriba, X. Aranz (1888-1900) divide, según su estructura, en las costas atlánticas de las pacíficas. Esta división es demasiado general para ser usada en estudios geomorfológicos, pero —como ya se ha
mostrado—permite ubicar a las costas de Chile dentro de un contexto mundial de fenómenos que, a grandes rasgos, está de acuerdo con la realidad. Para Chile, la consideración de la estructura es importante.

A. Penck (1899) parte de la oposición entre costa asimilada consecutiva (konsequent Steilküste) y costa llana consecutiva (konsequent Flachküste). No entra en casos genéticos demasiado difíciles de aplicar. Sin embargo, para la costa de Chile esta dualidad es difícil de ver, porque en muchos de sus casos, el mismo tipo fundamental, pueden mezclarse costas llanas y asimiladas. Pero en Penck hay ideas importantes:

a) La de complementación (Ausgleichküsten de von Martens), fenómeno importante para la taxonomía;

b) La de las costas lobuladas (gelappten Küsten), concepto que se puede aplicar por ejemplo al sector de Coquimbo o al de Quintero.

W. M. Bates (1888 y 1912) se refiere exclusivamente a los fenómenos del solventamiento de costas (Erosionküsten) y del hundimiento (Sehundungküsten), asociando estas costas con formas parejas y simples y las segundas, con formas irregulares y complicadas. Para la evolución en cada caso aplica el modelo del ciclo marino, que es un esquema ideal.

Dentro de este esquema de solventamiento y hundimiento trabajó T. Gilliver (1896, en Johnson, p. w. 1919), quien planteó directamente las ideas de succión y escurridad. Según Guarda Johnson, Davis clasifica las "costas" más bien que las "costas" de la costa, y sus términos no sólo suponen un cambio actual de nivel y que es un movimiento de la tierra el que se produce, sino también que el movimiento de la tierra es constante, implicaciones que no son justificadas en muchos casos reales. En cambio, succión y escurridad no sugieren necesariamente movimiento de la tierra o del mar.

La clasificación de Johnson se reconoce más bien con Gilliver. Parte de la base de que la mayoría de las costas muestran rastros de succión en unos casos y de escurridad en otros, atendiendo a las glaciaciones, los interglaciares, y la transgresión holoceno. Pero no da importancia a los movimientos bióticos y tectónicos. Hay rastros de las costas que no son exclusivos de los modelos de Johnson por estar influidas por la isostasía (como en las costas de fiordos, tan importantes en Chile).

Por lo tanto, este criterio de clasificación no puede emplearse sin serio riesgo y en el mejor de los casos habría que hacer investigaciones geomorfológicas acuciosas, porque resulta que costas con formas típicas de succión para Johnson son en realidad de escurridad, en muchos casos. Como anota T. W. suelen (1918), los estudios de campo han indicado que todas las costas muestran evidencias de succión y escurridad y que serían costas compuestas, categoría que, sin embargo, contempla Johnson. En tiempos de este último, los estudios sobre el posglacial no habían progresado. Ahora se sabe que después de las glaciaciones hubo una transgresión universal y que en los últimos miles de años el nivel del mar ha bajado a partir de un óptimo de la transgresión holoceno.
marcado por R. Paskoff (1970) en el Norte Chico. La excepción a esta norma son las compensaciones isostáticas y los movimientos tectónicos. En otros tramos de la misma costa de Chile hubo en 1960 un hundimiento tectónico, que completó la anulación de toda muestra de emersión glaciusalítica en el tramo que va desde Puerto Saavedra a Chiloé, con una subsidencia cercana a los 2 m. (Weischet W. 1960).

A. de Lapparent (1907) no presenta realmente una clasificación, pero al describir las costas emplea ciertos principios que parecen mostrar la influencia de Penck y de Von Richthofen. Interés tiene su tratamiento de los accidentes de la costa acantilada, con formas debidas a diferencias de resistencia, como las enenasadas, agujas, pirámides, pilares, arcos e islas de erosión, conceptos aplicable a algunos tramos importantes de la costa chilena, como la costa de rasas de Paskoff, el sector de Constitución, Pelluhue y otros. Da también importancia a los valles sumergidos, con respecto a los cuales hay que recordar que Gulliver y Johnson emplean la expresión ría shoreline, siempre que haya un hundimiento de una topografía normal. La introducción del concepto de ría en la terminología costera se debe a Von Richthofen, y Penck tendió a diferenciar las rías de las calas y los crunus (cherms en árabe). Estas formas están presentes en la costa de Chile y vale la pena tenerlas en cuenta como individuos claves en criterios de división, siempre que se tenga presente el factor aportado por la regresión postdunklerquiana.

Con F. P. Gulliver (1899, en Johnson D. W. 1919) empieza también otra forma de enfocar la taxonomía de las costas, distinguiéndose la forma inicial de la forma secundente, según la mayor o menor influencia del mar. Este criterio fue examinado por E. de Martonne (1926), quien se inclinó por presentar un esquema que está más de acuerdo con Von Richthofen, Penck y Lapparent.

El punto de vista de Gulliver es también usado por F. P. Shetard (1948), quien trata de evitar los errores a que puedan llevar las ideas de sumersión y emersión, clasificando las costas en primarias (o no influidas por el mar) y secundarias (modificadas fundamentalmente por el mar). Reconoce que, debido a la transgresión holocena, el mar no ha estado mucho tiempo en su nivel presente, por lo que gran parte de las costas ha sido poco modificada por los agentes marinos. Esta idea es importante como criterio taxonómico y es fácil probar su veracidad en Chile. Esta línea taxonómica es seguida por A. Gullcher (1954), que parte de las costas iniciales o primarias, insistiendo en la estructura, elemento fundamental en el caso chileno. De este autor es importante tomar la idea de estructura arqueada para el extremo sur del país y las islas subantárticas.

Al lado del punto de vista estructural, conviene mantener para Chile un punto de vista tectónico, tal como se desprende de los resultados de Paskoff en la parte norte de la costa de rasas y de Weischet, de Puerto Saavedra al sur. Este criterio es el fundamental para C. A. Cotton (1952, en E. C. F. Bird, 1969),
que distingue las costas estables (no afectadas estrictamente en el Cretácico) de las móviles (afectadas en el Cretácico). Los estudios sistemáticos de WUNDER y PASSOFF han dado buenos resultados al respecto para sectores restriangulos de la costa chilena, pero se necesitaría estudios del mismo tipo a lo largo de todo el litoral para poder aplicar el punto de vista de estos. Por otra parte, para las costas estables no sólo ha actuado una sumersión reciente, sino además una erosión postdenkzerkian...

Un punto de vista distinto a los analizados, pero muy conectado con los de DAVIS, GULIVER y JOHNSON es el de H. VALENTIN (1954), según el cual hay dos posibilidades del estado actual de una costa:

a) Avance, por erosión y/o progresión deposicional (Forgerückte Küsten);

b) Retroceso, por sumersión y/o retrogradación erosional (Zurückgleischene Küsten).

Ello se basa en evidencias de ganancia o pérdida de tierra. El esquema es un avance con respecto a los trabajos daneses cíclicos. Pero su aplicación es difícil al no contar con estudios sistemáticos detallados a lo largo de toda la costa, como lo demuestran los ejemplos del mapa de Valentín en la parte correspondiente a Chile. Puede aprovecharse, sin embargo un idea muy buena de Valentin: la distribución de los costas locales de los regionales y la separación de tipos e individuos costeros (lokale Küstenzystaten, individuen, lokalen Küstenzuständtypen regional Küstenzustandstypen). Los casos individuales se pueden resumir en tipos. Se ha la atención en el estudio de la costa (Zustand), lo que plantea una nueva perspectiva de enfoque evolutivo, que permite la referencia a costas sumergidas emergentes o a costas construidas de desarrollo destructivo, como estados costeros dinámicos. También aparecen tipos armonicos, como las costas sumergidas emergentes. O sea, hay una mención conjunta de la ganancia y la evolución de la costa. Por ejemplo, aquellos sectores de la costa chilena en que se haya probado la transgresión holozona y la retrogradación posdenkzerkiana corresponde a costas sumergidas emergentes y son dinámicos.

Por el momento, la clasificación de Valentín podría aplicarse a algunos individuos locales, como los mencionados por J. M. POSTAR (1952). Longworth, San Antonio, Constitución y Rio Imperial, donde los procesos de avanzo o retroceso actual de la costa pueden ser probados únicamente.

Para conservar las posibilidades de una clasificación como éstas en los ar- bitros costeros (asociaciones interdependientes de rocas, suelos, formas, clima, vegetación) W. C. PUTMAN inició en 1961 un proyecto para la "Identificación y Clasificación de Rango Costero", a raíz del cual J. T. Mc GILL (1958) concebieron su Mapa de Formas Costeras del Mundo, usando un criterio de clasificación basado en los factores de la evolución. Distinguen seis formas costeras mayores, los rangos de la orilla, las tierras altas de las bajas, pero esta apli-
cación se hace difícil cuando se trata de trabajar a otra escala que no sea la original del mapa (1:25.000.000).

F. OTTMANN (1965) emplea un criterio muy peculiar en su clasificación, tomando en cuenta la orilla del mar que tiene una ubicación pasajera y que varía con las transgresiones y las retrogradaciones, razón por la que hay que definir las relaciones entre los relieve continental y submarino. Opone así las costas abruptas (rocosas) sin plataforma continental a las bajas, con plataforma. Pero se sabe que en el caso de Chile —frente a las costas abruptas— existe una plataforma que, aunque pequeña a escala mundial, es importante genéticamente y geográficamente, lo que no hace fácil la aplicación de esta clasificación en el país. No obstante, la idea de relacionar la morfología submarina con la emergida es ampliamente usada en la división propuesta para Chile por el autor.

En el Instituto de Oceanología de la Academia de Ciencias de la URSS se planteó el problema de que en muy difícil aplicar las clasificaciones potencialmente a escala pequeña. Así nació una nueva clasificación que juntó los criterios de V. P. ZEMLJACI (1967) y O. A. LEON'T YEV (1965) (en ACADEMY OF ACADEMIC USSR & MAIN ADM. (1959), confeccionada primero para las costas del Pacífico. Sus fundamentos son los rasgos geomorfológicos, su génesis y la edad de los tipos básicos, que se han desarrollado bajo diferentes condiciones geográficas formando tres grupos básicos:

1) Costas jóvenes formadas por procesos subácíferos y tecólicos y poco cambiadas por el mar.
2) Costas formadas por factores ajenos a la acción de la ola.
3) Costas formadas por procesos líticos al oleaje.

Cada grupo tiene subgrupos y tipos. En los subgrupos se nota la influencia de V. P. ZEMLJACI en cuanto a costas primarias y secundarias.

A pesar de la problemática planteada por sus autores, esta clasificación sería de mucho más fácil uso si se intercambiaron mutuamente sus grupos dentro de los distintos grupos, porque al no ser así pueden notarse alteraciones visibles de la realidad en algunos casos, como se vio al analizar el mapa de costas del atlas soviético en el caso de Chile.

Como se puede desprender de la revisión de las distintas clasificaciones, en general estas toman con la dificultad de la escala a la que se va a trabajar. Esto se ve claro en los casos de costas de dienas. Aproximadamente, Chile hay dienas desde Arica a Concepción, pero en forma discontinua, sin ser ellas el rasgo principal de la costa, lo que demuestra que —fundamentalmente— todo interés taxonómico implica un problema de escala. El mismo problema de los científicos soviéticos ha tenido el autor en el caso de Chile, razón por la cual la clasificación de aquellos parece ser la más adecuada para los requerimientos de éste. Sin embargo, y por los comentarios hechos a la clasificación soviética, aun ésta es insuficiente en su aplicación a Chile, razón por la que en la división de las costas de este país se tomarán sólo en parte estas ideas. Es evidente que
cada clasificación tiene algunas buenas categorías que han sido aprovechadas. Los soviéticos intentan sistematizar las costas de bahía y emplean con propiedad el concepto de regularización, que tiene aplicación universal, pero dentro de algunas clasificaciones clásicas se integran individuos extraños que se pueden agregar para la mejor denominación de un tipo de costa (como las rias de Von Richthofen, las esteras y lóbulos de A. Penck o los firths, separados claramente por valentins en los últimos años). Finalmente, los conceptos local y regional aplicados a las costas debieran ser explotados, así como también la armonia y desarmonia genética de valentins.

4. EL PROBLEMA TAXONOMICO Y LOS METODOS SISTEMATICOS

En seguida, se planteará el problema taxonómico en dos aspectos, tendientes a lograr una división adecuada de las costas de Chile:
1) Los criterios de distinción, y
2) La acomodación de una escala.

1) LOS CRITERIOS DE DISTINCION:

Aqui, el principal problema es encontrar sectores de costa, cuyas denonminaciones geomorfológicas las hagan comparables. En esto, las clasificaciones revisadas en general hacen incompatibles ciertas categorías al ser aplicadas, porque no dan la posibilidad de establecer combinaciones dentro de su marco.

En el presente caso, antes de definir taxonómicamente cada sector hubo que buscar sus límites. Para lo que se siguió el siguiente método:

a) Estudio de la exposición de las diferentes partes de la costa. A veces la orientación coincidió con diferencias morfológicas. Otras veces no;

b) La observaciones de su aspecto planimétrico. Este antecedente fue mucho más decidido para establecer diferencias;

c) Después se recogió los antecedentes ligados a la morfología emergida. En este caso se hizo un estudio exhaustivo de la bibliografía en relación con las experiencias personales del autor. Se vio que no todos los rasgos de la morfología emergida son decisivos para establecer diferencias, pero que —fundamentalmente—; la amplitud de las terrazas marinas y los caracteres estructurales de la Cordillera de la Costa, sirven en general para detectar diferencias. No así las formas de la orilla, vale decir los acumulados, areniscas, playas, dunas y las formas banadas asociadas;

d) Bajo la influencia del trabajo de F. Ottmann (1953) y de sus comunicaciones verbales, se pensó que era importante dirigir la atención a la morfología submarina. En efecto, hay toda una conexión genética entre el relieve del fondo inmediato a la costa y el de ésta, hecho que queda por conocer mejor e interpretar. En general, se ha advertido que la plataforma continental cambia con cada sector distinguido y que la morfología submarina es un buen índice como criterio de distinción. Se ha contrastado, conjuntamente, que los
principales cañones submarinos definen sectores de distinto ancho en la plataforma, hecho que puede estar relacionado con la tectónica:

e) Teniéndose en cuenta los cuatro criterios de distinción básicos (expresión, configuración y aspecto planimétrico, morfología emergida y morfología submarina), se buscaron en seguida los factores geomorfológicos principales, con el fin de encontrar el fundamento de la denominación geomorfológica de cada sector. Para esto se ayudó a los siguientes puntos:

- Procesos morfogénéticos fundamentales (control estructural, agentes exógenos, impronta marina, sello continental). Esto es más o menos la mención del tipo local y regional.

- La mención del individuo regional clara, más o menos en el sentido concebido por A. VALENTIN (1954) (Bahía ancha, ría, fiordo, etc.).

- El fundamento de regularización cuando testimonia un grado importante de acción marina.

- Los testigos de movimientos eustáticos, cuando ellos son suficientemente claros y afectan la forma fundamental de la costa.

- Aspecto general de la plataforma continental.

Dentro de los distintos aspectos que han sido usados como criterios de clasificación, el aspecto planimétrico se ha expresado numéricamente, para fijar más objetivamente las diferencias entre los tramos de la costa. Esta idea nació de los investigadores alemanes, y desde los tiempos de Ritter, cuando se empujó a establecer el grado de indentación de la costa con una relación numérica, c. e. HAGEN (1853; en JOWHNSON, 1912) usó la relación entre el largo real de la línea de costa y la línea de costa más corta que el área en cuestión podría tener. Con esta idea, en el presente trabajo se ha aplicado un índice de indentación a cada tramo de la costa, teniendo en cuenta que I_r es el largo real de la costa y que I_e es el de la recta que une sus extremos; entonces:

$$I_r = I_e$$

donde I_e equivale a una costa no indentada, que lo será cada vez más cuanto menor de I_e sea la cifra decimal.

También se emplea el concepto de ensanchamiento, definido como la relación entre el ancho y el fondo de las ensenadas, en kilómetros. Ello es, en algunos casos, el complemento descriptivo de la indentación.

2) LA ADONOMACIÓ N DE UNA ESCALA:

Debido a que se trata de las costas de todo Chile, con excepción de las islas oceánicas, no es posible hacer una buena sistemática a escala detallada. En esta ocasión residirán esencialmente las dificultades taxonómicas derivadas de las clasificaciones analizadas. Por ello parece buena la idea de valoar al aplicar los conceptos regional y local, tipo e individuo a la morfología costera, porque de esta manera se puede observar una buena parte del problema. Los individuos concretos, como formas, pueden hallarse tanto local como regionalmente, lo que se ve en costas litorales, dunas, acañuladas, arroces y otros.
No parece acertado el punto de vista de pensar al oponer las Streltziäen a las Flachläuten, porque ellas pueden sucederse en un tipo de costa o, a su vez, tener ambos una relevancia regional como conjunto, lo que es típico de Chile.

La carta base para efectuar la división fue el Mapa Físico de Chile 1:1 000 000 del Instituto Geográfico Militar. Al millennium tiene cobertura los tipos locales y los tipos regionales, en cuanto a su génesis, configuración y estado, dejan a los individuos como indicadores de estos aspectos y extendidos como individuos regionales más que como individuos locales.

5. DIVISIÓN PROPUESTA

Esta división establece 16 sectores de la costa chilena, denominados con términos propios con nombres y significados, aunque no se use la clasificación de esos anteriores, porque las modificaciones que establece la combinación de factores son demasiado fundamentales. Con respecto a un trabajo anterior del autor (1951), algunas denominaciones han sido modificadas.

El cuarto "División geomorfológica de las costas de Chile" resume las partes de cada sector en un mapa fuera de texto (la escala reducida) indica la ubicación de esos rasgos (ver Apéndice).

6. FUNDAMENTOS DE LAS DENOMINACIONES GEOMORFOLOGICAS

A continuación, se explicarán las bases por las que se ha elegido una denominación determinada para cada sector:

1) ARIQU-CALOJA BUESA, (Fig. 1).

La acción abrasiva aquí es descrita por H. BEYER (1950 a y b) en lo que respecta a los arestes actuales, separados del continente por los llamados "cántaros" o grietas encañadas por el oleaje. La influencia de la tectónica en las formas fundamentales se nota por el abultamiento de la Cordillera de la Costa, que es un falso acantilado. En general, no hay tendencia a la consolidación de hablas. Los perfiles trazados por el mismo Beyer en la plataforma continental frente a punta Madrid, la revela como escotadura, hecho que se nota también en el relieves.

2) CALA BUESA-TOCÓMILLA, (Fig. 1).

Tienen a repetirse las mismas circunstancias abrasivas y tectónicas, pero aparecen las faldas amplias junto a las cuales se ve duramente una terraza principal con acantilados y terrenos de abrício ("marros"). Conjuntamente, el relieve muestra mayores influencias de la erosión continental (p. ej., el valle del Río Leng). El PUNTA RONCE.

3) TOCÓMILLA-PUNTA RONCE.

La influencia tectónica se manifiesta en lo muy rectilínea de esta costa, que muestra un estrictamente de la terraza principal ("marros"). La plataforma
continental presenta bordes a distintas profundidades. Luego, es escalonada y angosta.

5a) PENÍNSULA DE MEJILLONES.

Es descrita con claridad por BRÜNING, que muestra un horst separado de la Cordillera de la Costa por la tercera principal también reconocida. Las bahías delimitantes acusan, por su forma de arco, un importante proceso de regulación.

4) PUNTA RINCÓN - TONGOY. (Fig. 2).

El papel abrasión actual del mar se nota en las puntas que separan las bahías amplias, algunas de las cuales (Bahía Inglesa; Gran Bahía de Quillón) son habitadas. Sus cortes de protección en el cierre sur son horst (muerto Copiapó), lo que muestra la influencia tectónica en el conjunto, como lo prueba, c. SANTÉRMINE (1965) entre Caldera y Bahía Salado. Ello también se ve en el afanamiento insular (Islas Chiloe, Chiloé y Fajaló). La forma de hendidura de las bahías principales indica importantes procesos locales de regularización. Por su parte, la importancia de los valles que llegan hasta la costa corrobora la acción erosiva continental. El río Copiapó es el primer río chileno que descansa directamente en el mar con un gasto considerable.

5) TONGOY - PUNTA LOMBRÍA.

Es notoria aquí la banqueta de erosión del Pleistoceno Superior (PARKER, 1970), atacando las olas directamente la base de un salar o el pie de un acantilado mercurio, lo que muestra el papel de la abrasión marina en el Pleistoceno, el Reciente y el Actuel. La condición de la teológica de falla ha sido estudiada por E. PARKER (1985), quien describe la teológica de frente en las rocas del Zacate a lo largo de los sitios de Talimán, con funcionamiento en los Cretácenos, y que condiciona una costa rectilínea con planisferios escalonados.

E. PARKER (1955, en PARKER, 1979) denomina con el nombre de esta en la costa cantábrica a superficies de erosión delimitadas hacia el interior por relieves litorales escarpados y hacia el mar, casi siempre, por acantilados altos. PARKER propone designar costas de hasta el mar comprendido entre Bahía El Teniente y el Acocanga. Pero atendiendo a los otros factores, conviene distinguir una unidad entre Tongoy y Punta Lombría.

6) PUNTA LOMBRÍA - PUNTA CURRAMILLO.

La acción abrasiva del mar se nota en las puntas. La orilla rocosa está integrada en la plataforma de abrasión al pie del acantilado del Pleistoceno Superior (PARKER, 1970), encontrándose entre Papas y Zapallar buenos ejemplos del trabajo de las olas, con formación de bloques paralelepípedicos y tratamiento
de "lapies" en granito. También se manifiesta en acumulados vivos formados de rocas blandas, como al norte de Horcon. El papel de la erosión continental se ve en la coincidencia de los fondos de bahías con la desembocadura de derrames importantes (Pupio, Quillímar, Petorca, Catapillo, Aconcagua, Marga-Marga). La inundación de las bahías más importantes (Horcon, Quintero, Valparaiso) se levea regulación.
La mayor irregularidad de esta parte de la costa se muestra también en la plataforma continental.

7) PUNTA CUNCAZUELA - DICHATO. (Fig. 5).

En cuanto al papel abrasiológico de las dos, este sector es similar al anterior. Hay acumulados vives de rocas graníticas, como el que está al norte de Agarabo y el que está al sur de Constitución; y otros en formaciones blandas, como ocurre en el estero de Yali y el Río Rapel. Los areniscas atacadas por el oleaje son muchos y tienen relaciones con plataformas de abrasión debido a un nivel del mar más alto que el actual (Postglacial y quizás Plistoceno Superior) al cual están asociadas formas más espectacularmente de abrasión, como los arcos y pirámides de Constitución o los pilares ("stacks") de Pelínhue.

Este sector de la costa también puede clasificarse como "transicional", porque contiene importantes tramos protruidos en los que se observa un considerable proceso de regularización. Así se aprecia en la costa arenosa entre San Antonio y Punta Toro (35°47'), con un gran campo de dunas, donde se ha probado que la regularización es avanzada y que está condicionada por la exposición (Araya 1957), dando una forma planimétrica concava. Después está la costa de Quivogo y Portú, de granísimo campo de dunas. La regularización ha dado aquí forma convexa, contrastante a su vez con la costa de las dunas de Chanco, que es cóncava.

La plataforma continental es más amplia y regular que en todos los sectores de más al norte.

8) CONCEPCIÓN Y ARICA.

La abrasión se nota en las costas (Tumbes, Lurapié). La influencia estructural de la estructura fallada, según (1959) va en las bahías cerradas una homología geográfica, por la reparación de formas características entre las bahías de Duhain, Concepción y Arica, debido a la similitud de procesos que las han formado. La influencia del pilar de Nahuelbuta en Tumbes permite hablar de estructuras de horst en el súlco. Las bahías San Vicente, Concepción y Arica están en regularización, lo que no ocurre hacia Lebu, en que la orla es más bien abrasiva.

9) LEBU - QUIRILLAL (33°20'). (Fig. 6).

Este tramo llama antes de todo la atención por estar regularizando, siendo la influencia del mar lo fundamental. Ello es revelado por la extensión de los cordones litorales (los más extensos de Chile), que determinan una costa muy pareja, encerrando a su vez a las más importantes lagunas litorales del país. La tendencia a la regularización con formación de cordones litorales, hace que los ríos en su descensascarcas tiendan a transformarse hacia el S., delimitados por los cordones. La tendencia reciente y actual de esta costa es de
hundimiento (Weischet, W. 1960; Pumar J. M. 1962). Ha colaborado para la constitución de ambientes estuariales, profundizados por movimientos eustáticos (Weischet, W. 1960) con hundimiento de alrededor de 1,5 m. Las formaciones clásicas y blancas que componen la mayor parte de la orilla facilitan el predominio de la acción marina que, además de su papel regularizador con la derivación lateral, impone incidencias cataclásticas como el tsunami y la transformación ulterior del año 1960. A una combinación entre los mecanismos normales y los cataclásticos parece deberse el origen y evolución de algunas formas importantes, como las isletas, g. Lomolite (1968) expone una ingeniosa hipótesis sobre los orígenes del lago Budi. Exacta ésta o no, es de todas maneras evidente el papel de la regularización marina sobre formaciones blandas (formación Budi de Lomolite) y la interferencia de mecanismos cataclásticos.

En cuanto al carácter acumulativo de esta costa, los aportes de arena parecen provenir principalmen-te de los ríos Imperial y Totén.

10) Queule-Canal de Chacao.

La acción abrasiva del mar se revela en el generalizado afloramiento del ciclo metamórfico en forma de asentamientos, coqueles y puntas que —entre Queule y San Pedro— alternan con playas de arena, salpicadas (1960 a y b) lácticas que al sur de Coquim motas pequeñas playas se consiguen con asentamientos en la roca metamórfica. De los resultados de W. Weischet (1965) se concluye que el asentamiento más próximo al mar expone en veces directamente a la acción de las olas, oscilándose los niveles más bajos en escolleras.

El papel de la erosión continental está en la preservación de los valles principales como formas estables, pudiendo clasificarse esta costa como de ríos y calas. La subaundencia de 1,4 a 1,6 m. reportada por Weischet (1960 y 1965) para 1960, acercó este rango. J. M. Pumar (1962) estima que el río Valdivia ganó en profundidad unos 5 m., porque al hundimiento se sumó el dragado de las corrientes producidas por el maremoto. Algo parecido ocurrió en el río Bueno.

La configuración de esta costa está condicionada por la estructura local de la Cordillera de la Costa.

10a) Costa Occidental de la Isla de Chiloé. (Fig. 4).

La justificación de la denominación propuesta para este tramo de la costa es prácticamente la misma que la indicada para el sector anterior. Con la diferencia de que en Chiloé Occidental no hay prácticamente ríos, pero que en cambio pueden revelarse algunas calas. La individualidad se la fachada occidental de la isla con respecto a la oriental es reseñada por R. Monet. (1985), quien llama la atención en la ausencia de terrenos bajos junto al mar en la primera. Esto permite relacionar mejor esta costa con el sector anterior, sigue
correspondiendo, de acuerdo con Brüggen, al pie de la Cordillera de la Costa, una estructura condensada de la misma configuración que al norte del Canal de Chacao. La continuidad de la plataforma continental entre ambos sectores —bastante regular— propició también antecedentes en favor de esta afirmación.

11) CORSA DE PUERTO MONTT Y COSTA ORIENTAL DE LA ISLA DE CHILOÉ.

Las acantiladas decididas de la costa de Puerto Montt y de las islas revelan el papel abrasivo del mar. La tendencia subyacente de la costa acuática a este proceso durante el siglo XIX. En la parte sur de Bahía de Ancud se formó una acantilada, que le es imputada a fenómenos del agua. También es importante aquí el papel erosionista continental, siendo formas continentales bidentadas fenómenos actual y reciente, que contribuye produciéndose debido a impactos sectoriales. De acuerdo con re- copilaciones de H. Sievers (1965), se puede afirmar que desde el maremoto de 1960 los fondos de los canales sufrieron alteraciones.

Las rías y calas aparecen como formas indicadoras de estratos, como tendencia más reciente, quedando las islas como testigos primarios depositacionales. Según K. Mörner (1965), éstas permanecen como restos emergidos del Llanura Central, o sea, son testigos primarios depositacionales de hundimientos.

11a) COSTA CONTENITAL DE CHILOÉ.

Las formas de abrasión se advierten desde el Cauquénario: hay terrazas en secciones cuestionarias (más de menos 100 m. de altura) y playas con sedimentos de origen glacial, observándose también playas dependientes del escan- tillo más próximos al mar (Levi, et al., 1966).

Los ríos indican la génesis erosiva continental, siguiendo líneas tectónicas que se conectan con la dirección de ríos y lagos. Los cursos epicoasterales sobrepasan, en profundidad, a la plataforma (hasta casi de 500 m.)

12) BOCAS DEL GUAPE - PENÍNSULA TAIATAO. (Fig. 5).

Continuando la costa de ríos, la justificación de la denominación es la misma que para el sector anterior. H. Steffen (1918-44) llama la atención en la tendencia rectilínea de ríos y canales, que separan las islas como un vitral. Este retículo de ángulos rectos y agudos es de origen tectónico, la que se revela también en los canales epicoasterales. Estos testigos de tectónica y de glaciarización aportan una característica primaria a la costa.

12a) PENÍNSULA TAIATAO SUR y EXMO DE OQUIL.

Para fundamentar la denominación de este tramo hay que citar condiciones de evolución geomorfológica similares a las de la parte oriental de la isla de
Chiloé y de Puerto Montt. La acción de la regularización aquí es bien notoria en la Bahía de San Quintín y Golfo de San Esteban. Al parecer, esta parte de la costa tiene como antecedente primario al último representante del Llano Central hacia el S.

13) GOLFO DE PENAS - CALE DE HORNOs. (Figs. 5 y 6).
Los motivos de su denominación son casi los mismos que para el sector (12), pero aquí los fiordos tienen típicamente sus cabezas engastadas, porque enfrentan directamente las colinas de hierro patagónicas. Una excepción es el complejo del Fiordo Baker, pero al parecer aquí el hierro desapareció de los valles en su pasado cercano (STEEVEN, 1919-14).

El control tectónico de los cañones e islas tiene dos estilos:

a) El más compacto del archipiélago de Wellington que está más en concordancia con las líneas de islas, y b) el más disperso, que se extiende desde Madre de Dios hasta Cabo de Hornos y en el que se manifestara la influencia de estructuras arqueadas debido a la tectónica de arco del extremo meridional de Sudamérica y de la Península Antártica en relación con las Antillas del Sur.

Los cañones epicocontinentales fueron descritos por STEEVEN, quien descubrió curvas profundas en la plataforma, cuyas profundidades pueden alcanzar hasta 1,500 m.

14) PUERTO NATALES Y PARTE ORIENTAL DEL ESTRECHO DE MAGALLANES. (Fig. 6).

Frente a la región de Punta Arenas y Puerto Natales la unidad anterior no se presenta con las características descritas, lo que obliga a tratar de sistematizar un sector separado, constituido por la costa de Puerto Natales, del Seno Skyring, del Seno Gresy y del Estrecho de Magallanes a partir de su canto principal.

El carácter acuarelístico de estas costas se puede deducir de las descripciones de H. FUESALDA (1965), que reconoce terrazas marinas labradas en sedimentos terciarios y articularizaciones litorales influidas por cortes orográficos. Las planificaciones son consideradas como resultado de la reconstitución de materiales glaciares por el mar, debido a las fuerzas diferentes del nivel de mares en el postglacial (FUESALDA, H. 1960-8). El carácter primario se nota en los rasgos esenciales de la configuración en bahías lobuladas (geladiten Küsten de penes), correspondientes y lenguas glaciares del Cuaternario (glaciares de piedmont).

Las cartas batimétricas dejan ver aquí una disección de la plataforma continental.
15) PENÍNSULA ANTÁRTICA E ISLAS ADJACENTES. (Fig. 7)

Su estructura arqueada es definida por H. Fuenzalida (1965) que describe a la península como "un arco que por el sur hace juego con la curvatura general del continente americano". En esta estructura, la acción primaria de los glaciares ha producido ensenamientos de un diseño complicado, incisos en peliplanitos englacelados de rocas resistentes. Por esta razón, se propone aquí el nombre de contrafrente, como resultado de una erosión glacial no bien encuadrada. Una descripción de E. Flores (1952) deja entender que la más importante causa de esta contrafrente es la acción del hielo, y que la acción del mar es notoria sólo sobre éste, formando acantilados de hielo.

En cuanto a la parte insular, hay que separar, como lo hace H. Fuenzalida (1965) los archipiélagos antárticos de los subantárticos. Los primeros están ligados al continente y tienen la misma filología que la península. Desde el punto de vista de la morfología costera pueden proponearse como islas, las menores de estas islas, enclaves del oléron, menores de estas islas, enclaves del oléron.

16) COSTAS DE LOS MARES DE BELINGHAMAINEN Y DE WEDDELL

El papel abrasivo marino se aprecia directamente en el borde del fiordo, formando un acantilado de hielo similar al de la F. Antártica. La costa engalanada es conocida como costa alta acantilada. El mar ha conseguido regularizar los bordes del hielo promoviendo la formación de iceberg. Sin embargo, la verdadera regularización por abrasión en el hielo, sólo es válida para el fondo del mar de Weddeell, porque la evolución del remo está controlada por la roca basal.

7. DISCUSION

La discusión se centrará en dos aspectos: los criterios de distinción y la comparación de las denominaciones.

7.1. LOS CRITERIOS DE DISTINCION.

Se han revisado aquí de tres elementos: la textura, marina, la margen continental y el índole de identificación.
a) Las terrazas marinas.
Como se ha visto, dentro de la morfología emergida de cada sector no se ha dado importancia como criterio de distinción a las terrazas marinas, porque —en principio— no son un buen elemento para este fin. En general hay terrazas, mal o bien conservadas, a lo largo de toda la costa. En algunas partes ellas son muy amplias (región de Rapel); en otras, muy estrechas y casi inexistentes (Norte Grande y Patagonia). Los límites de estas diferencias no coinciden con los de unidades geomorfológicas más compactas, o sea, en que se consideren más factores geomorfológicos.

Analizando los cuatro aspectos principales que han servido como criterios de distinción, se ha visto que la configuración planimétrica es el mejor camino para introducir otros aspectos. No ocurre lo mismo con la exposición, cuyo cambio a veces no coincide con diferencias morfológicas importantes. Dentro de la morfología emergida, son la estructura y el grado de acción marino los que permiten captar mejor las diferencias entre los distintos sectores, y no los escalamientos dejados por los cambios del nivel del mar. Las investigaciones dadas a conocer por K. FUEZDALA et al (1965) no permiten entender bien aún estos fenómenos como para que sean la base de trabajos taxonómicos, porque los cambios eustáticos del nivel del mar han sido modificados por movimientos tectónicos o de origen epiprogenético. Lo que se sabe de esto, sólo permite formar algunos grandes cuadros y no hacer una división funcional de la costa. De acuerdo con los mismos autores, el solevantamiento epigenético ha sido dominante al N del paralelo 40°, pero localmente algunas terrazas han sido desplazadas 40 o 50 m. por la tecónica. Aun así, no existe un conocimiento cabal de este comportamiento a lo largo del territorio. Por ello, se ha descrito en el cuadro sólo la amplitud de las terrazas (ancho) y no otros rasgos que contengan implicaciones genéticas.

b) La margen continental.

Más ayuda que las terrazas ha prestado la morfología submarina, por lo menos al norte del Canal de Chacao. Se ha apreciado en general que —a partir de cada límite entre dos sectores— cambian las características de la margen continental. Ello parece acusar una relación genética y estructural entre la parte emergida, la orilla y la parte submarina, no sólo por las variaciones eustáticas de nivel del mar, sino también por la estructura y tecónica locales (ver mapa fuera de texto).

Una revisión general de los caniones submarinos junto a la costa, da a entender que la amplitud de la plataforma continental varía —en general— a partir de ellos. Puede pensarse que la tecónica de la margen continental, con movimientos tangenciales, ha influido en este hecho. Como la estructura acuícola visiblemente un papel diferenciador de tipos de costa, se ve pues que la
correlación de la morfología submarina con la emergida y la configuración es admisible y útil como hipótesis de trabajo.

c) Índice de indentación (I) (ver Apéndice)

Se ha encontrado que el resultado que arroja el cálculo de este índice no es satisfactorio en algunos casos, pero siempre que se quiera encontrar diferencias de detalle. Por ejemplo, el sector 9 (Lebu-Queule) —el más parejo de Chile Sudamericano— muestra un índice \(I = 0.972 \) menor que el sector 5 (Tocopilla- P. Rincón) con \(I = 0.980 \), que siendo muy rectilíneo no es tan parejo como Lebu-Queule. Aquí la concavidad y convexidad de una costa regularizada influyen en el índice y no la indentación. En estos casos, las diferencias entregadas por este no son de indentación, sino sólo de un aspecto muy general de la configuración de la costa. De este modo, resulta que el sector 5, siendo más indentado que el 9 (que prácticamente no lo es), aparece con un índice mayor.

Debido a esto, K. Ritter y otros investigadores alemanes del siglo pasado idearon otras relaciones que —como la empleada en este trabajo— están sujetas a válidas críticas. De Martone (1903, en Johnson 1919) opinó que mejores resultados pueden obtenerse usando el área entre las curvas de nivel arriba y abajo del nivel del mar. Es fácil darse cuenta de la dificultad e incertidumbre de este método.

A pesar de las limitaciones expuestas, el método empleado aquí muestra bien las diferencias esenciales entre los distintos tramos de la costa. Para la expresión numérica, no parece necesario ni conveniente usar más de dos decimales como significativos (ver cuadro sinóptico en Apéndice).

7.2. Comparación de las denominaciones:

Se ha intentado que las denominaciones aplicadas a los distintos sectores permitan compararlos entre sí, como se explicó oportunamente. Sin embargo, algunas denominaciones tienen partes que no obedecen a una norma rígida y que —a primera vista— restarían claridad a una comparación. Por ejemplo, el sector Arica-Caleta Buena corresponde a abrasivo tectónico de falla y el siguiente (Caleta Buena-Tocopilla), abrasivo y erosivo tectónico de bahía amplia. La duda está entre lo que diferencia a una costa de falla de una de bahía, cuando son términos incomparables. Lo que se quiere decir, en realidad, es que el primer caso la estructura fallada mantiene una costa alineada esencialmente conforme al afallamiento principal; en cambio en el segundo, que esta estructura más la erosión continental ha hecho posible la formación de bahías.

Se ve enseguida, que la mayoría de los sectores es abrasiva. ¿Por qué mantener el término cuando precisamente la abrasión parece ser un factor común y no diferencial? Esto no dejó de hacer meditar al autor, quien llegó a la conclusión de que lo mejor era hacer destacar lo esencial en la génesis de la costa
de acuerdo con su configuración actual. En dos tramos contiguos, Concepción-Arauco y Lebu-Queule, se usan las denominaciones abrasivo estructural de horst y regular acumulativa de cordones litorales respectivamente. Es evidente que la abrasión marina actual afecta a ambos sectores, pero el proceso morfo-genético fundamental del que han resultado los grandes cuadros ha sido la abrasión y erosión a uno y la regularización por acumulación en otro.

De todas maneras, es incuestionable que muchas de las denominaciones pueden ser mejoradas con nuevos estudios.

8. CONCLUSIONES

1) Hasta la fecha no existía una división razonada de la costa de Chile;
2) Las clasificaciones de costas existentes no permiten ser usadas para definir realidades complejas de costas. Dentro de ellas, la que mayores satisfacciones ha dado al autor es la de ZENKOVICH y LEONT'YEV, pero con modificaciones de estructura;
3) El problema de la aplicación de las clasificaciones reside ante todo en la escala;
4) Una costa debe definirse por dos tipos de procesos morfogenéticos fundamentales: los que le han dado origen y los que la hacen evolucionar;
5) Con respecto a esto, conviene mantener la distinción entre procesos armónicos y disarmónicos de VALENTIN;
6) El uso de los conceptos regionales aplicados por este último autor puede ayudar a comprender el papel que juegan los tipos e individuos (locales y regionales) en la clasificación de las costas;
7) A pesar de los estudios hechos sobre el Cuaternario marino aún no es posible tomar a las terrazas marinas como factor importante de división de costas;
8) Sin embargo, el problema puede enfocarse al revés: tomar una división de costas para continuar el estudio y comparar de una manera más adecuada los niveles marinos, teniendo clara conciencia del significado del sector de la costa al cual pertenecen. Sólo entonces se podrá sacar conclusiones generales para la historia geomorfológica. O sea, este enfoque permitiría elegir mejor las muestras para estudiar la geomorfología histórica de la banda litoral;
9) Estos últimos estudios deberían poder establecer el grado de armonía o de disarmonía evolutiva de cada uno de los sectores;
10) Finalmente, sería deseable que divisiones como la propuesta fuesen empleadas con fines de acondicionamiento. La programación de caletas pesqueras, de instalaciones portuarias e industrias en la banda litoral, necesitan de trabajos previos de carácter taxonómico y de regionalización.
<table>
<thead>
<tr>
<th>Sector</th>
<th>Expansión</th>
<th>Aspecto planimétrico</th>
<th>Morfología eógena</th>
<th>Morfología submareal</th>
<th>Denominación propuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Arauco - Cañada Brena</td>
<td>NNE-SSW</td>
<td>Excluyéndose 20 x 25</td>
<td>Escarpa de la Cordillera de</td>
<td>Plataforma anquica: 10 km.</td>
<td>Abrasivo terrestre de fallo</td>
</tr>
<tr>
<td>(DP 40)</td>
<td></td>
<td>y 5 km. Más o menos</td>
<td>la Costa hacia el mar: 100 a 200 m. Encina terraza</td>
<td>Tahl cubierto con reflo-</td>
<td>con peladizos hacia la</td>
</tr>
<tr>
<td></td>
<td></td>
<td>paraje. Amplitud or-</td>
<td>lano amplio (15-40 m). Fosa de Krinmadel a más de</td>
<td>sión y refl.</td>
<td>plataforma continental.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eina excesiva: 5 ket-</td>
<td>6.000 metros.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pequeñas bahías. 1 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.93.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Cañada Brena - Tocopilla</td>
<td>Agres.</td>
<td>Esto 20 x 25 y 5</td>
<td>Escarpa de la Cordillera de la Costa hacia el mar.</td>
<td>Plataforma anchoa: más</td>
<td>Abrasivo terrestre de fallo</td>
</tr>
<tr>
<td>- Tocopilla</td>
<td>N-S</td>
<td>km. Más acostado.</td>
<td>Terraza más alta (25 km.) con bordes de cresta marina</td>
<td>de 25 km. Tahl con forma</td>
<td>con plataformas continentales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algunas bahías amplias</td>
<td>(Batocen)</td>
<td>más típica, sin reflores im-</td>
<td>territoriales y creativo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poco cerradas. 1 =</td>
<td></td>
<td>porantes. Fosa de Krinmadel</td>
<td>terrestre de bahía, con</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.301.</td>
<td></td>
<td>persistiendo hacia el S.</td>
<td>plataformas continentales</td>
</tr>
<tr>
<td>3) Tocopilla - Punta Rauda</td>
<td>NNE-SSW</td>
<td>Mayoreándose, con ex-</td>
<td>Escarpa de la Cordillera de la Costa hacia el mar.</td>
<td>Plataforma continental</td>
<td>Abrasivo terrestre de fallo</td>
</tr>
<tr>
<td>(25°)</td>
<td></td>
<td>cepción de F. Mejilla-</td>
<td>Terraza más alta (40 km) con bordes de cresta marina</td>
<td>alargada. Tahl sin refl.</td>
<td>con peladizos en la platafor-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nes. Poco encasamiento:</td>
<td>(Batocen)</td>
<td>más intensivo. Unidad de fosa</td>
<td>ma continental.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 x 5 km. 1 = 0.60.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Península de Mejillones</td>
<td>20 x 55 km.</td>
<td>(Excesa). Bahías am-</td>
<td>Plataforma lisa de frente a la península.</td>
<td></td>
<td>Abrasivo terrestre de bahía</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plias de 30 km. de</td>
<td></td>
<td></td>
<td>con bahía de regulari-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>amplidad. Frente</td>
<td></td>
<td></td>
<td>zación y peladizos en</td>
</tr>
<tr>
<td></td>
<td></td>
<td>marítimo paraje 1 =</td>
<td></td>
<td></td>
<td>plataformas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.647.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Punta Rauda - Tongoy</td>
<td>Notoria-</td>
<td>Más dispersa que en</td>
<td>No hay escarpa de la Cordi-</td>
<td>Plataforma continental</td>
<td>Abrasivo terrestre y</td>
</tr>
<tr>
<td></td>
<td>mente NNE-SSW</td>
<td>sectores anteriores.</td>
<td>llera de la Costa. Plata-</td>
<td>típica (20 km). Tahl con</td>
<td>creativo terrestre de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>escenas grandes y abier-</td>
<td>fica con refl. (Batocen). Fosa</td>
<td>en forma contínua. A veces</td>
<td>bahía amplia con algunos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tas. Algunas escenas</td>
<td>de Richard en la parte N. La</td>
<td>con reflores (Romocen). Fosa</td>
<td>peladizos habidas de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>principales propendientes</td>
<td>parte más profunda de</td>
<td>de Richard en la parte N. La</td>
<td>regularización de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a S. altas. 1 = 0.75.</td>
<td>Chí Choice.</td>
<td>parte más profunda de</td>
<td>plataformas habidas de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chile.</td>
<td>regularización de</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Lugar</th>
<th>Expresión</th>
<th>Aspecto planimétrico</th>
<th>Morfología emergida</th>
<th>Morfología submarina</th>
<th>Denominación propuesta</th>
</tr>
</thead>
</table>
| 5) | Tongoy, Punta Lobota (31°50') | Frenteamento NNW-SSW | Muy pareja sin exansi-
| | | | onamiento importantes: | | | |
| | | | 5 x 1.5 km. Rectitud |
| | | | medida. 1 = 0.93. |
| | | | Bloques costeros correspon-
| | | | dientes a pilas tecmicas |
| | | | (recto). Pilas laterales |
| | | | muy elevadas sin continuidad |
| | | | de muelles. |
| | | | Plataforma muy estrecha |
| | | | en parte por (3-5 km.). Ancho |
| | | | máximo (10 km.) coincidir |
| | | | con ancho mínimo de terraza |
| | | | fluvial. Talud de vertiente |
| | | | lateral y con reflejos. Fusa |
| | | | hasta 5.600 m. |
| | | | Abrasivo texturico de |
| | | | tallos (horn). Platafor-
| | | | ma irregular. Cuesta de |
| | | | mareas. |
| 6) | Punta Lobota- | Aprox. N-S. | Viéndose más distan-
| | Punta Causa-
| | | tial que los tramos | |
| | mila. | | adyacentes. Ensenan- |
| | | | za de 10 x 3 x 4 km. |
| | | | protegidos al S. 1 = 0.759 |
| | | | Complejo montañoso de la |
| | | | costa se empieza a indistin-
| | | | tizar. Terraza laterales |
| | | | presentan acantilados |
| | | | altos alternados con |
| | | | bordes graníticos (exante) |
| | | | hasta el S. |
| | | | Plataforma y talud de mero|
| | | | logia complicada con impor-
| | | | tantes reflejos. Fusa a más de |
| | | | 6.800 m. |
| | | | Abrasivo y erosiva es- |
| | | | tructural de haba ancha |
| | | | con taludes de regula- |
| | | | rización lobuladas. |
| | | | Plataforma irregular. |
| 7) | Punta Causa-
| | | Sencillez de ensenazas |
| | mila-Di-
| | | muy abiertas sin pun- | |
| | chito. | | tas en giroso en la par- |
| | | | te S. (Sin protección) |
| | | | 1 = 0.872. |
| | | | Plataforma litoral muy |
| | | | amplia hasta 30 km. A |
| | | | veces amplias vega li-
| | | | terales impresionantes | Ambientes estuarinales. |
| | | | Plataforma mucho más am- |
| | | | plio que más al N (hasta 50 |
| | | | km.). Talud muy simple en |
| | | | parte N y con reflejos en |
| | | | parte sur. Fusa empieza a |
| | | | perder paulatimdad e impor-
| | | | tancia. |
| | | | Abrasivo acumulatorio se |
| | | | haba ancha con taludes de |
| | | | regulación lobuladas. Pla- |
| | | | tafoma regular. |
| 8) | Concepción, | Variable | Grandes habas con |
| | Arelauco | | puntas en giroso al S. |
| | | | Ensamblamiento profun- |
| | | | do, talas junto a las |
| | | | puntas. 1 = 0.857. |
| | | | Bloque costero estrechado |
| | | | con condición de Nehyloina. |
| | | | Pilas laterales anchas al |
| | | | pilas costero decumus de km. |
| | | | de ancho (FUENZAL). |
| | | | Últimas áreas importantes. |
| | | | Plataforma más ancha que en |
| | | | sector antiguo (40 km.). |
| | | | Talud con reflejos. Cabeza |
| | | | submarina. Fusa inexistente. |
| | | | Abrasivo estructural de |
| | | | haba con habas cerca- |
| | | | das de regulación. Platafor-
<p>| | | | ma continental irregular. |</p>
<table>
<thead>
<tr>
<th>Sector</th>
<th>Exposición</th>
<th>Aspecto pluviométrico</th>
<th>Morfología emergida</th>
<th>Morfología submarina</th>
<th>Denominación propuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
<td>Especificación</td>
<td>Aspecto pánico-métrico</td>
<td>Morfología emergida</td>
<td>Morfología submergida</td>
<td>Descripción propuesta</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>12) Roca del Gua-</td>
<td>Variable</td>
<td>Canales e islas separados</td>
<td>Parte dorsal: islas accidenta-</td>
<td>Llano Central montaño con</td>
<td>Fenosa y afloramiento sec-</td>
</tr>
<tr>
<td>do F. Talón.</td>
<td>de creciente por canal</td>
<td>dos del extremo por angu-</td>
<td>les más altas (cinta Coste-</td>
<td>señales maroma de</td>
<td>to uso de fósiles e islas</td>
</tr>
<tr>
<td></td>
<td>principal. Ralladura en</td>
<td>droides y cuentas seudo-</td>
<td>ra de la Costa). Orientales</td>
<td>con restos primarios.</td>
<td>con restos primarios;</td>
</tr>
<tr>
<td></td>
<td>puntos rectas y angu-</td>
<td>poligonal. Seis profun-</td>
<td>más bajas (cintas Llanos</td>
<td>Canales e islas con</td>
<td>Canales e islas con</td>
</tr>
<tr>
<td>17) P. Talón</td>
<td>S y variable</td>
<td>Muy accidentado que</td>
<td>Costa más baja y con escasas</td>
<td>Plataforma muy ancha en</td>
<td>Fenosa residual con restos</td>
</tr>
<tr>
<td>S y variable</td>
<td>a la costa. Of-</td>
<td>sector acentuado. Bahías</td>
<td>con erosión de hundimiento del</td>
<td>Golfo de Perú.</td>
<td>primarios depositados;</td>
</tr>
<tr>
<td>quil.</td>
<td>variable</td>
<td>más arriba. I. =</td>
<td>Llano Central. Llano de origen</td>
<td></td>
<td>y bahías de regulariza-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,82.</td>
<td>glacial.</td>
<td></td>
<td>ción. Caras esco-</td>
</tr>
<tr>
<td>19) Golfo de</td>
<td>Variable</td>
<td>Seis profundos. Cana-</td>
<td>Parte insular: Archipiélagos</td>
<td>Plataforma muy escar-</td>
<td></td>
</tr>
<tr>
<td>Per-</td>
<td>las seudo-</td>
<td>les e islas en dos com-</td>
<td>con restos de morfología glacial.</td>
<td>cada por cadenas de</td>
<td></td>
</tr>
<tr>
<td>tus del Cabo</td>
<td>poligonal compuesto</td>
<td>ponientes separados en</td>
<td>Islas con rocas. Tierra fir-</td>
<td>cadenas separadas (hasta 1,500</td>
<td></td>
</tr>
<tr>
<td>de</td>
<td>en Wellington y más dis-</td>
<td>Wellington y más dis-</td>
<td>me: fiordos con cascadas en-</td>
<td>m. (surtos). En parte ocu-</td>
<td></td>
</tr>
<tr>
<td>Rios.</td>
<td>preso al S. Ralladura</td>
<td>tratados rectilínea de canales y</td>
<td>gleciada (puntas de glaciar).</td>
<td>sionado, restos enfiel-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>entre</td>
<td>transformaciones en We-</td>
<td>signan los deltas (Surtos).</td>
<td>te a Wellington. (50-50) km).</td>
<td>te a Wellington. (50-50) km).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>llington, I. = 0,149.</td>
<td></td>
<td>Muy ancha al S. 00-100 km.</td>
<td>Muy ancha al S. 00-100 km.</td>
</tr>
<tr>
<td>Sector</td>
<td>Exposición</td>
<td>Aspecto pionimétrico</td>
<td>Morfología emergida</td>
<td>Morfología submersa</td>
<td>Denominación propuesta</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
ABSTRACT

GEOMORPHOLOGICAL BASIS FOR A DIVISION OF THE COASTS OF CHILE

Former works have not divided the chilean coasts in a rational form. The application of the existing classifications is difficult, due to scale and taxonomic problems. In this work, an approximation of the zonwicke and loewens's classification has been used.

Four criteria of differentiation have been established: a) Orientation, b) configuration, c) emerged morphology and d) submarine morphology. However, only the principal geomorphologic factor and the regional key-individual have been used for the geomorphologic denominations of the sections.

Finally, sixteen sections are proposed for the Southamerican and Antarctic coasts of Chile, as evidenced by the complexity of the structure of land areas and the secondary wave processes. Their present configuration dates from postglacial transgression and post dunke7577rian regression.

REFERENCIAS

(Referencias de series geográficas según campo. Otros, según World List of Scientific Periodicals.)

