APÉNDICE.

INSTRUCCIONES

PARA LAS

OBSERVACIONES METEOROLÓJICAS

POR

DON IGNACIO-DOMEYKO.

Termómetro.

Colocación.—Se debe colocar el termómetro al aire libre, en un lugar abierto no muy cerca de los altos edificios y de cualquier obstáculo que impida la circulación del aire. Debe también estar continuamente en la sombra, mirando el sur a unos veinticinco centímetros poco más o menos de la pared y de cualquier otro objeto que pueda emitir y absorber con facilidad rayos caloríficos. También debe recibir rayos de luz reflejados por algunas murallas blancas colocadas en frente. La altura a la cual se colgará el instrumento no debe pasar de dos metros sobre el suelo y es menester abrigar cuanto sea posible ahí dicho instrumento contra la irradiación nocturna de una gran parte del cielo, como también de la lluvia y de la nieve.

(Consultando la disposición general de la colocación que con mayor frecuencia se da a las casas en Chile, se puede aprovechar para la colocación del termómetro algún corredor que por lo común se haya por el lado sur del edificio, accesible al viento suroeste, y si no es posible evitar completamente el reflejo de la luz de las murallas vecinas y la irradiación nocturna del cielo, se debe rodear la ampolla del termómetro de un cilindro
espacios de hoja de lata todo agujereado i cortado por rasgaduras a lo largo del cilindro, para que circule libremente el aire.)

Precauciones de tomar al momento de las observaciones.—
Al momento de leer los grados de la escala termométrica, el ojo debe hallarse precisamente a la altura de la columna del mercurio, i el observador en frente del instrumento. No se debe demorar mucho en la lectura de los grados; pero hecha rápidamente una observación, debe el observador, después de un rato, volver a su lugar, para la comprobación de la primera lectura. Si la ampolla del termómetro se halla cubierta de rocío es indispensable secarla primero con un pañuelo i esperar en seguida que el mercurio quede estacionario.

Precauciones relativas al punto cero.—Cada seis meses se debe verificar en el termómetro que se emplea para observaciones diarias el punto cero de su escala. Con este objeto se introduce el instrumento en la nieve o hielo machacado hasta el punto en que se detiene el mercurio en su mayor descenso. Es necesario apretar algo la nieve al rededor del termómetro, cuyo tubo debe estar en este momento colocado verticalmente i se apuntará con la mayor exactitud posible la división a la cual se mantiene el mercurio. Determinada bien la diferencia entre esta división i el cero de la escala, servirá esta diferencia para corregir todas las observaciones que se harán en los seis meses siguientes.

Termómetros de máxima i de mínima.—Es necesario colocar estos termómetros en una posición bien horizontal, al lado del termómetro ordinario, i al momento de observarlos debe el observador colocarse en frente del índice de manera que el plano de la estrechez interior del índice, forme ángulo recto con el eje de los ojos. Tomado el apunte, debe inmediatamente el observador hacer retroceder los índices a sus respectivos lugares. Téngase presente que es necesario cotejar de tiempo en tiempo estos termómetros con el termómetro ordinario o termómetro modelo.

Psicrómetro.

Colocación.—Se ha de colocar el psicrómetro con las mismas precauciones que el termómetro ordinario: es decir, al aire libre,
a la misma distancia del suelo y de las paredes, etc. Conviene agradarle contra el viento, si es muy recio, y que no haya en su proximidad derrames de agua o suelo muy húmedo.

Precauciones.—Se recomienda que el jénero con que se cubre la ampolla del termómetro húmedo sea más bien de lino que de algodón, bastante fino y no enteramente pegado al vidrio, que también se conserve limpio y se mude de tiempo en tiempo. El agua con que se humedece el termómetro debe ser pura (agua de lluvia), tomada a la temperatura del aire, y se debe evitar que se desaparezcan gotas cerca del termómetro seco. Lo mejor es humedecer de una vez el lienzo y observar la escala del termómetro: humedecido a cierta distancia, con el auxilio de un anteojo, marcando el punto a que se detiene el mercurio en su mayor descenso. Repítase la misma observación dos o tres veces y tome al propio tiempo apunte de la temperatura del aire seco.

Se entiende que el observador comparará de vez en cuando los dos termómetros del psicrómetro al aire libre, sin humedecer ninguno de ellos; y si nota alguna diferencia en su marcha, hará las correcciones correspondientes a dicha diferencia.

Barómetro.

Colocación.—El barómetro debe estar colgado en un cuarto cuya temperatura sea la más uniforme posible y en tal altura que la parte variable de la columna este halle a la altura de los ojos del observador. Conviene que el tubo barométrico en esta parte se halle entre el ojo del observador y la luz; a fin de que se pueda ajustar con mayor exactitud la tangencia del borde inferior del índice con el menisco del mercurio.

Precisión.—En todo caso el observador debe asegurarse de si el nivel del mercurio en la cubeta coincide con la punta del alfiler (suponiendo que el barómetro está en el sistema Furtín), lo que se efectúa cuando está punta toca a su imagen reflejada en la superficie limpia del mercurio. Siendo esta operación algo fastidiosa cuando se tiene que repetir dos o tres veces al día, se puede (como lo propuso el señor Moosta en su memoria publicada en los Anales de la Universidad el año 1863) calcular una tabla de correcciones que correspondan a cada variaciones
barométrica, deducidas del diámetro de la cubeta i del diámetro del tubo barométrico.

Un momento antes de hacer la observación, debe el observador dar con el dedo un ligero golpe en la parte del tubo donde se halla el vértice de la columna, con el objeto de vencer la adherencia del mercurio al vidrio.

Para evitar el influjo que pudiera tener sobre la columna del mercurio el calor del cuerpo del observador, no se debe demorar mucho en hacer una observación barométrica, para lo cual bastan por lo común uno o dos minutos.

El método que se conseje seguir en este caso es el siguiente: apuntará el observador lo más ligero posible la altura barométrica i de la termómetro pegado a este instrumento; se retirara en seguida; i después de un rato, volverá a acercarse al barómetro para asegurarse de la exactitud de su primera observación.

En cuanto a la altura en que se coloca el barómetro.—Importa mucho tener determinada la altura en que se halla colgado el barómetro sobre el nivel del mar, o sobre un lugar cuya altitud está determinada; o si no, sobre la base de algún edificio o monumento público, cuya altitud podrá determinarse más tarde. En todo caso, elegido el lugar para la colocación del instrumento, si alguna necesidad obliga al observador a que varie dicho lugar, debe determinar con la mayor exactitud posible la diferencia de la altura en que irá continuando sus observaciones con relación al lugar anterior, o bien, con referencia a algún otro punto fijo bien determinado que debe señalar en el mismo diario donde apunte sus observaciones.

(No se cree necesario mencionar aquí el cuidado que debe tener el observador con su instrumento al pasarlo de un lugar a otro, pues se supone que la persona encargada de hacer estas observaciones posee los principios fundamentales de la física; debe solamente tener presente que al momento de colgar de nuevo el barómetro, es necesario inclinar lenticamente el tubo i fijar el oído en el golpe que produce el mercurio en la extremidad de dicho tubo, para asegurarse de que no haya penetrado el aire en el vacío).

Pluviómetro.

El uso del pluviómetro de Babinet no presenta dificultad en
la práctica. Debe solamente colocarse el instrumento en el centro del patio evitando la proximidad de los árboles y de las altas paredes. El vaso metálico se fijará en un pilar vertical, como de una vara de altura, cuyo pie debe estar firmemente embutido en un tablón horizontal de manera que todo el instrumento con su armazón pueda quitarse del lugar e estar guardado en un cuarto durante la estación en que no llueva. Es necesario que el borde circular del vaso metálico se halle siempre bien de nivel. En la pared del vaso de vidrio en que se recibe el agua después de la lluvia, y que sirve para medirla, está señalada la regla para el cálculo que se deduce de cada observación, y el observador no tiene más que asegurarse de que al colocar de nuevo el pluviómetro en su lugar, no ha quedado nada de agua en su interior.

Los vientos.

COLOCACION DE LA VELSTA.—La veleta destinada a señalar la dirección del viento debe hallarse elevada a lo menos unos seis a ocho pies sobre los edificios vecinos y en un espacio lo más libre y abierto posible. Si se quiere acomodarla para observaciones nocturnas, se hará pasar su eje por el techo y el entablado del cuarto en que se quiera hacer las observaciones, o cercado el pie de este eje en una punta, debe jirar libremente sobre un cojin de acero en el centro de un círculo dividido en ocho partes cardinales y en grados. Fijada en este mismo eje, la aguja que servirá de índice, debe hallarse la punta de la aguja siempre vuelta al mismo lado que la vanderilla; la cual se hará de una hoja de zinc de dos o tres pies de largo.

OBSERVACION Y ANOTACION DE LAS DIRECCIONES.—Llegando el viento a adquirir cierta fuerza, permanecerá la veleta en un movimiento oscilatorio continuo y sus oscilaciones crecerán en amplitud con la misma fuerza del viento. En tal caso, se ha de determinar con exactitud la dirección media, tomada entre los dos límites del desvío. Cuando el viento es muy débil, sucede que la veleta queda sin movimiento alguno, señalando la dirección, norte de la brisa que corre en el momento en que se la observa, sin la del último viento que tuvo bastante fuerza para moverla.

ANOTACION DE LA DIRECCION DEL VIENTO.—Se indica la dirección a de la v.
del viento con relación a los cuatro puntos cardinales y a los intermedios mediante las letras mayúsculas siguientes:

N. NNE. NE. ENE. E. ESE. SE. SSE. S. SSO. SO. OSO. O. ONO. NO. NNO. N.

Sin embargo, en los casos de alguna tempestad o de los vientos extraordinariamente fuertes, conviene marcar con los grados de los ángulos que el indicador de la veleta formará con las líneas norte-sur del lugar.

Corrientes de vientos a diversas alturas.—Con frecuencia se observan en Chile dos estratos de nubes que a diversas alturas corren en direcciones distintas las más veces contrarias. Es necesario en semejantes casos señalar qué rumbo lleva la corriente superior, aunque aproximadamente, con relación a la de abajo cuya dirección se ha determinado por la veleta. (2)

Se debe también observar en qué orden y a qué horas por lo común cambia de dirección el viento reinante, y las horas más frecuentes de calma.

Intensidad de la fuerza del viento.—Se determina la fuerza del viento ya sea del modo más exacto, mediante el anemómetro de Robinson, cuya descripción se halla en todos los tratados de física, y estimándose del modo más aproximativo posible, valiéndose de las siguientes anotaciones adoptadas por el Instituto Smithsonian.

C. Calma perfecta.
Br. Lígera brisa que apenas mueve las hojas de los árboles y se siente algo en la cara.
Vl. viento que mueve las ramas delgadas de los árboles y produce un suave ruido en el aire.
V. viento que conmueve los árboles enteros, levanta cuerpo ligeros del suelo, etc.
Vf. viento tempestuoso, que causa daño en los árboles, levanta las polvaredas, etc.
T. Tempestad.

(1) Se aconseja, para la determinación más exacta de la dirección en que se mueven las nubes de la región superior de la atmósfera, tomar por rumbo de comparación el de una calle o de una muralla; o bien, colocando en el suelo un espejo en cuya superficie se tienen marcadas líneas relacionadas con la dirección de la brújula, observar en este espejo el curso de las nubes con referencia a dichas líneas.
Estado del cielo.

Trasparencia, color, bruma.—Si por falta de tiempo de costumbre o de instrumento no se puede determinar el grado de trasparencia del cielo por los medios más exactos, descritos en los tratados de óptica y de meteorología, debe a lo menos el observador anotar los casos en que nuestro cielo aparece con una trasparencia e color azul extraordinario, y los casos en que este color en la parte más aproximada al horizonte forma color azul que tira al verde, verde de turquesa.

Debe también llamar la atención del observador en nuestro clima la aparición de unas brumas que, a veces, se levantan por el lado del mar, otras veces se estienden y permanecen al pie y en las faldas de la cordillera, la cual aparece enrojecida en ellas. Estas brumas, hallan sin duda en relación con el estado higrométrico de la atmósfera; y particularmente, las que se observan en los llanos intermedios por los lados donde estos llanos se juntan con las cordilleras, suelen desaparecer completamente cuando el aire está casi saturado de humedad, y, al contrario, adquieren cierta intensidad en la estación más seca del verano; lo que haría creer que los rayos del sol atraviesan con mayor facilidad el aire saturado de humedad que, el aire cuya fracción de saturación es más pequeña; o bien, que el aire en sus capas más allegadas a la superficie de los cerros en la parte en que éstos tocan a los llanos es (quizá por irradiación desigual del suelo), de densidad más desigual que en medio del llano o en la parte más abierta e distante de los cerros. En todo caso, estas brumas son unos fenómenos ópticos, mientras que aquellas que se levantan en el mar e invaden la costa son condensaciones de vapor y originan niebla.

Rocío, helada blanca.—Merece atención un estudio particular, en qué circunstancias, sobre qué especie de terrenos, en qué estación y en qué estado higrométrico de la atmósfera aparecen los rociós más abundantes en nuestro clima; como también a qué temperatura del aire y bajo qué grado de irradiación nocturna (véase el actinómetro) suelen cubrir nuestro suelo los rociós blancos.

Nebulás, carbón.—En la observación de las nieblas, se debe anotar las horas en que suelen, con mayor frecuencia, aparecer,
de qué parte del horizonte, y con qué viento vienen o se disipan, y si en el momento de disiparse suben o bajan.

No deben equivocarse las nieblas ordinarias con los demás vapores densos, que suelen formarse en los llanos bajos o se arrastran por los valles en ciertas estaciones del año, etc.

También se ha de notar, los casos en que las nieblas por su gran intensidad se transforman en lo que la gente del campo llama gorra.

Nubes: partes del cielo.—Para anotar del modo más conciso posible, qué parte del cielo se halla cubierta o descubierta, basta dividir toda la bóveda del cielo en cuatro partes y adoptar para la anotación en el registro las señas siguientes:

0: todo el cielo descubierto; claro.
1: la cuarta parte del cielo cubierta; 1—2 indica que la parte cubierta está entre una cuarta parte y la mitad del cielo.
2: la mitad del cielo cubierto; 2—3 en la mitad y los tres cuartos.
3: las tres cuartas partes cubiertas; 3—4 entre las tres cuartas y la totalidad del cielo.
4: todo el cielo cubierto.

Si a estos números se quiere añadir las letras mayúsculas N. E. S. O., se dará a conocer cuál de las partes del cielo se halla con mayor frecuencia cubierta de nubes.

Así por ejemplo: 1. N. quiere decir la cuarta parte del cielo por el lado del norte cubierta de nubes; 2. E. la mitad del cielo por el lado de los Andes cubierta de nubes.

Formas de las nubes.—Para la indicación de las formas, sirven las siguientes letras y señas adoptadas y por la generalidad de los observatorios meteorológicos.

Cr. quiere decir cirrus: nubes que son como unos filamentos o hilachas, las que tan pronto se estiran y se prolongan en curvas y en todas direcciones, tan pronto se enredan formando unas masas esponjadas como de fana o algodón.

Cu. cumulus: nubecillas más o menos redondas, blanquecinas o masas semi-esféricas, como infladas de aire y vistiéndolas por sus partes planas hacia abajo, unas veces arregladas unas a continuación de otras, formando series ya parale-
las unas a otras, ya divergentes; otras veces amontonadas unas sobre otras, formando como unas montañas cubiertas de nieve.

Cr. Cu. siendo las mas veces dificil juzgar a cuál de las formas anteriores pertenecen las nubes, mezclándose unas con otras i naciendo por lo comun las segundas de las primeras, se valdrá el observador de la señá Cr. Cu. para indicar la duda.

St. stratus, son unas fajas de nubes mas o menos horizontales que se forman muy a menudo al oeste o al este, al tiempo de ponerse el sol o en su salida.

Cr. St. son unas fajas de nubes formadas en parte de los cirrus que se estiran; se entrelazan i pasan insensiblemente a formar masas mas homojéneas, etc.

Né. nimbus: son masas de nubes sin formas determinadas, de color grisado, mas o menos oscuro, enteramente irregulares.

A mas de determinar la hora en que principia la lluvia i en que se acaba, como tambien la cantidad de agua caida, conviene que se adopten las siguientes señas para la anotacion de la fuerza o intensidad de la lluvia.

C. garúa: niebla muy densa que humedece bien el suelo sin producir gotas que caigan en dirección marcada.

Ll. Lluvia ordinaria, de gotas pequeñas a medianas.

Ag. Aguacero: lluvia violenta de gruesos goterones.

Rayos, tempestades eléctricas; electricidad atmosférica.

Siendo raras las tempestades eléctricas en Chile i apareciendo los rayos i relámpagos por lo comun en los cambios de las estaciones i en las mas veces con los primeros i los últimos aguaceros, gran servicio rendirán a la ciencia los observadores que con mucha atencion i exactitud observen todos los fenómenos meteorológicos que preceden o acompañan a estas tempestades, como tambien el influjo de ellas en la aguja magnética i en la trasmisión de los telegramas en los telégrafos eléctricos.

Mas delicadas i mayor estudio necesitan las observaciones del estado eléctrico de la atmósfera despejada i observaciones que exijen el uso de buenos electrocopios de condensación o aparatos de Pelletier.
Otros fenómenos atmosféricos dignos de ser observados.

1.° Los halos, parielios y coronas.

2.° Los relámpagos de color, particularmente los que son tan frecuentes en las cimas de nuestras cordilleras: relámpagos sin ruidos y que valgarmente se toman por erupciones volcánicas, apesar de que sehan aun en los cordones de los Andes donde no hai señas de volcanes activos ni siquiera son visibles por la gente que pasa las noches en la línea o cerca de la línea divisoria de los Andes. Seria muy interesante un estudio especial de las circunstancias que acompanan a este fenómeno en nuestros climas: la estacion y las variaciones barométricas y termométricas que mayor influjo puedan tener en estos relámpagos, la direccion y la figura de la luz de ellos, como tambien las formas y el color de las nubes o la falta absoluta de las nubes en tiempo en que parecen alumbrar el cielo dichos relámpagos con mayor abundancia e intensidad.

3.° Las auroras australes i el influjo de ellas en la aguja magnetica i en la trasmision de la electricidad por los alambres telegraficos.

4.° La frecuencia de las estrellas volantes i de bolides.

5.° Aparicion i caida de los aerolitos.

Tamboreos i ruidos subterranenos.

Esta clase de fenómenos debe ser uno de los objetos principa- les en que fijaran su atencion los observadores chilenos; pues quizas en ningun pais se puede hacer un estudio mas interesante de estos fenómenos que en Chile. Mas para que estas observaciones tengan un resultado positivo para la ciencia, el observador debe sobre todo determinar para cada temblor o ruido subterraneno, los hechos siguientes:

1.° Tiempo.—1.° La hora i, en cuanto sea posible, el minuto en que principió a sentirse el ruido o el movimiento del suelo, i tambien el minuto en que cesó de sentirse el fenómeno.

Para ajustar bien el tiempo i ponerlo en relacion con el del Observatorio astronomico de Santiago los observadores se aprovecharan del telegrafo electrico en todas los lugares pordonde se han establecido hasta ahora los alambres de comunicacion.
Con este objeto, el observador traspenderá, con la mayor brevedad posible, a la oficina central de Santiago; la hora y los minutos en que se experienció a sentir el fenómeno y la hora, los minutos y los segundos que tiene en su reloj al momento de pasar el telegrama. El oficial de la oficina de Santiago tomará apunte en este mismo momento de la hora que señala su reloj que tendrá siempre cotejado con el del Observatorio astronómico.

De este modo solamente podrá determinarse a punto fijo, con toda exactitud, la verdadera coincidencia y aun, la dirección de los temblores sentidos en las diversas partes de Chile. Ahora, siendo notorio que aun en el mismo lugar donde ocurre un terremoto, para vez, las personas de diversa sensibilidad y diversa sagacidad para observar estos fenómenos, sienten a un mismo instante el principio del ruido o del movimiento del suelo, importa que el observador consulte con este objeto a las personas de mas confianza residentes en el lugar donde se ha experimentado el temblor, sobre el tiempo y la dirección en que, según el parecer de ellas, se principió y se prolongó el movimiento, para comparar estos datos con los que el observador ha adquirido personalmente.

2.° Dimensiones.—Lo 2.° dirección de un temblor (a más del arbitrio que acabo de proponer y que consistiría en la comparación de los tiempos en que se ha principiado a sentir el ruido o movimiento en las diversas partes de la República) puede ser determinada aproximadamente: 1.° por la sensación personal que han recibido los diversos habitantes del mismo lugar; 2.° por la dirección de las murallas y paredes que han sufrido mayor estrago en este mismo lugar; 3.° por la colocación o plano de oscilaciones de los péndulos que pararon en sus movimientos, como sucede en los grandes terremotos de dirección fija; 4.° por falta de aparatos más prolijos, suspendiendo libremente en las esquinas de las casas, cuyas paredes blanqueadas se divi- rigen, por ejemplo, al sur y al este, bolsas ennegrecidas con holín, o observando sobre cañal de las dos paredes se han movido y han marcado los arcos más largos durante el terremoto.

3.° Intensidad e naturaleza del movimiento.—Debe el observador señalar si el movimiento ha sido oscilatorio, vibratorio, o por sacudimientos interrumpidos: recio, suave o apenas sensible; acompañado o no por los ruidos e de qué parte parecieron
venir estos últimos; qué efecto ha producido el terremoto sobre los edificios construidos de diversos materiales; i sobre qué partes de los edificios se experimentó mayor estrago, etc.

La irradiación del calórico nocturno: frio zenital.

Estas observaciones pueden ser muy interesantes si se efectúan en diversas partes de Chile, a diversas alturas i, en distintas estaciones, mediante el actinómetro de Pouillet, cuyo uso i manejo no presenta dificultad alguna. Debe solamente evitarse para la colocación del instrumento la proximidad de grandes árboles i edificios. El termómetro interior del actinómetro debe mirar toda aquella parte del cielo que se halla descubierta por los bordes del cilindro metálico puesto a nivel; i el segundo termómetro se colocará a la menor distancia posible del primero i a la misma altura, debajo de un corredor espacio o debajo de un telón. Las observaciones se harán desde el momento en que el sol baje al horizonte, siempre que el cielo se halle despejado en la región zenital. Se han de observar los dos termómetros a un tiempo de media hora en media hora, i las observaciones mas interesantes en nuestro clima son las que se hacen desde el anochecer hasta la media noche i desde que amanece hasta una media hora después de la salida del sol.

Debe en todo caso el observador fijar su atención al propio tiempo en el influjo de las brisas que a estas horas sobrevienen, i en el estado higrométrico del aire.

Evaporación del agua.

Puede muy bien servir para esta clase de observaciones el aparato conocido bajo el nombre de atmómetro de Gasparin.

Póngase el cajón metálico de este aparato a un metro de altura encima del suelo, sobre un plano bien horizontal i, marcada bien la superficie del agua con la extremidad de la espiga metálica del aparato, se medirá a diversas horas del día, particularmente en las horas de la mayor sequedad del aire, de la mas alta temperatura i de lo mas recio del viento reinante; cuanto ha bajado el nivel del agua debajo de la mencionada punta. Cuando el viento sopla con tal fuerza que hace saltar i arrastra consigo gotas de agua, se aconseja poner debajo del aparato hojas gruesas de papel preparado a propósito, que se
mucha con cualquiergota de agua caída del cajón, y se calculan aproximadamente las pérdidas debidas a esta causa.

Ozonometría.

Existen actualmente un interés muy particular en las observaciones ozonométricas, sobre todo, en todas las ciudades grandes y en los centros de las poblaciones. Se da preferencia en ellas al uso del papel de Jami de Sedan, que se debe colocar al abrigo del sol y de la lluvia a la misma altura que el termómetro y el psicrómetro que sirvan a las observaciones diarias.

Las precauciones que se deben tomar en el uso del mencionado papel son las siguientes: se ha de tocar el papel siempre con los dedos secos e limpios; se escojerá para su colocación un lugar en que no haya derrames de agua ni putrefacciones o fermentaciones de materias orgánicas; se pondrá el papel en su lugar a las horas fijas, por ejemplo, a las seis de la mañana, a las doce y las seis de la tarde; al sacar el papel de su lugar se sumerje y se vuelve (por unos cinco a diez segundos) en una copa de agua destilada, por un tiempo tanto más corto cuanto más oscuro sea el color del papel. En fin, se pondrá el papel en el cromoscopio, en la pequeña abertura de la hoja impermeable, colocando en la otra abertura, enfrente de la primera, el listón de la gama cronométrica que parece tener el mismo color que dicho papel. Se juzgará de la semejanza o identidad de los dos matices colocándose el observador enfrente de una ventana y procurando ejercitar su vista cuanto pueda para distinguir las más pequeñas diferencias en los grados de color. Apuntará inmediatamente el número o grado cronométrico que corresponda al mencionado listón.

Tiempo, es decir, horas en que se deben hacer las observaciones.

Importa mucho que las horas en que se hacen las observaciones meteorológicas sean fijas y siempre las mismas en toda la República; pero es muy difícil establecer estas horas e imponerlas a los observadores, que por lo común, se hallarán recargados de otras ocupaciones. Si se exige demasiado de ellos, lo harán mal, se desanimarán, y renunciarán muy pronto a la tarea, y sus observaciones inspirarán poca confianza. Por otra parte, si no se
precisa, bien el tiempo y ciertas horas en que estarán obligados, a lo menos los observadores de los liceos, a hacer sus observaciones, poco provecho se sacará de ellas si se perderá inútilmente el trabajo.

Principiamos por el termómetro. El único método de rigorosa exactitud, si se trata de determinar la temperatura media del lugar, es hacer las observaciones termométricas de hora en hora, tanto de día como de noche; pero este método no se puede poner en práctica ni aun en los observatorios meteorológicos mantenidos con gran costo y provistos de un número crecido de empleados. Cualquier otro método que se proponga tendrá sus inconvenientes, cuando se tome en consideración lo variada que es la configuración del país, en cuanto a sus altitudes y a las circunstancias locales del territorio.

Así por ejemplo, los meteorólogos europeos suelen proponer que en cada lugar se hagan las observaciones termométricas tres veces al día, es decir:

A las siete de la mañana.
A las dos de la tarde.
A las nueve de la noche.

Aña determinan la corrección que se debe hacer del término medio sacado de estas tres observaciones para cada estación y para el año entero, cuando se quiere obtener la verdadera temperatura media. Pero, ¿es posible que este término medio y las correcciones anexas sean susceptibles de la misma exactitud y de igual aplicación a todos los lugares desde Caldera hasta Melipulli, tanto en la costa como en las playas, como en los llanos intermedios o interiores, al pie de los Andes, o entre las masas gránicas, sobre llanuras deseadas de toda vegetación, como en la proximidad de las selvas?

Por otra parte, si se adoptan las mencionadas horas para observaciones termométricas resultará otro inconveniente. El mismo observador, si se le obliga a observar el termómetro a la siete, a las dos y a las nueve, tendrá también que hacer observaciones barométricas entre las nueve y las diez de la mañana, entre las dos y las tres de la tarde, y a las diez de la noche, para observar el máximo y el mínimo barométrico, y también tendrá que observar el mínimo y el máximo de tempera-
ratura, que son datos mas importantes para el estudio de los cambios atmosféricos, para la agricultura i para otras aplicaciones de la meteorología, que la determinacion de la temperatura media del lugar en todo el año; pues se sabe que esta temperatura puede variar de un lugar a otro, aun a poca distancia, cuando se compara, por ejemplo, un punto tomado al pie de las Andes con otro a un quilómetro de distancia en medio de un llano.

No seria prudente contar con el entusiasmo i el celo por la ciencia de la jeneralidad de los observadores cuando se quiere imponerles deberes que solamente con sacrificio de sus intereses o faltando a otras obligaciones puedan llenar. Personas entusiastas i libres de emplear una gran parte de su tiempo en estos trabajos, cumplirán sin duda con lo que la ciencia exige, no necesitarán instrucciones. Pero de la jeneralidad de los observadores no se debe exijir sino lo posible; i como acabo de decir, si se exige demasiado, llenarán los registros meteorológicos con datos inexactos o mal observados.

Tomando, pues, en consideración lo que acabo de decir, no parece que se pueden reducir las observaciones de la jeneralidad de los observadores a ciertas reglas fijas que indiquen el mínimo del trabajo que se exigirá de ellos. Estas reglas comprenderán tres medias horas de observacion diarias i los dias en cada mes de observaciones, a toda hora o a cada tres horas, de dia como de noche.

Primera media hora (de 9 a 9 30 por la mañana). A las nueve de la mañana en punto, se hará la primera observación del termómetro libre; al mismo tiempo, si el observador tiene un termómetro de máxima, apuntará el mayor descenso de este termómetro i pondrá el indice en su lugar. (Si no tiene termómetro de máxima, procurará en tiempo de los mayores fríos del invierno observar el termómetro libre al amanecer o poco antes de la salida del sol de la cordillera, para determinar el mayor frio que se experimenta en el lugar).

En esta primera media hora, después de haber tomado el apunte de la temperatura a las nueve, acomodará el observador el psicrómetro i fijará la atencion en el mayor ascenso barométrico (pues en la mayor parte del año a esta media hora corresponde el máximo de la presión atmosférica) i arreglará el pluviómetro si es la estación de la lluvia.
MEMORIAS CIENTÍFICAS

Procurará a las 9 h. y 30' tener ya tomados los apuntes de la altura barométrica, de la observación psicométrica, del estado del cielo, de la dirección y fuerza del viento, y del agua caída.

Segunda media hora (de las 2 h. 30' a las 3 h. P.M.). A las 2 h. 30' se hallará otra vez el observador en el lugar donde tiene sus instrumentos. No tomará la temperatura del termómetro libre sino a las tres en punto; pero en esta media hora (que es por lo común el tiempo del mayor descenso barométrico, de la más alta temperatura, y de la mayor sequedad del aire) tomará el apunte:
(a) del mayor descenso del barómetro,
(b) de la mayor diferencia entre los dos termómetros del psicrómetro,
(c) del efecto directo del sol, sobre el termómetro ennegrecido,
(d) del estado del cielo, dirección y fuerza del viento, agua caída.

Tercera media hora (de las 9 h. a las 9 h. 30' de la noche). A las nueve en punto observará por la tercera vez el termómetro libre, y desde las nueve a las nueve y media observará:
(a) la marcha barométrica; apuntará su mayor ascenso;
(b) hará observaciones actinométricas si se posee el instrumento, y si el cielo está claro, en calma;
(c) observará el estado del cielo, la dirección del viento, etc.

Días al mes para observaciones continuas.

Siendo el objeto principal de estas observaciones determinar la corrección que se ha de hacer del término medio de las tres observaciones termométricas diarias hechas a las nueve, a las tres y a las nueve, para deducir de ellas el término medio de la temperatura en veinticuatro horas, se elegirán para observaciones continuas dos días en cada mes, días en que el observador se hallará menos ocupado y mejor dispuesto para este trabajo. Procurará elegirlos de manera que no sean muy aproximados uno del otro y podrá variarlos del modo siguiente:
El 1° y el 15° en enero.
El 2° y el 16° en febrero.
El 3° y el 17° en marzo, etc.

Si las ocupaciones o la salud no permiten al observador hacer
estas observaciones de hora en hora i no tiene auxiliarei, ha-
rá a lo menos observaciones termométricas en estos días con toda
la prontitud posible, en las horas siguientes, principiando desde
el mediodía:

A mediodía en punto (9°)
A las tres de la tarde (3°)
A las seis de la tarde (6°)
A las nueve de la noche (9°)
A la medianoche (12°)
A las tres de la mañana (15°)
A las seis de la mañana (18°)
A las nueve de la mañana (21°)

De esta manera, tendrá incluidas en estas ocho observaciones
las tres de obligación diaria i añadirá solamente cinco estra-
ordinarias.

A D V E R T E N C I A — Es natural que al observador que carezca,
todavía de hábito i de costumbre para hacer las observaciones
arriba indicadas, ellas le tomarán más de media hora al prin-
pio, cada vez que se empeñe en hacerlas debidamente; pero lue-
go verá que el indicado tiempo es suficiente para el cumpli-
miento de las reglas que debe considerar como de obligación abs-
soluta. Se dejará lo demás al cuido personal de cada observador i
a su capricho.

Los ventajas i resultados que se pueden obtener del plan propuesto
en esta instrucción, si se efectúan las observaciones con debida
exactitud i prontitud, son las siguientes:

1. Las tres observaciones termométricas diarias (a las 9°, a
las 3 i a las 9) darán la temperatura media de las horas que
mas influyen en la vegetación.

2. Corregidas estas observaciones por las que dos veces al mes
se harán de hora en hora, o bien, ocho veces en veinticuatro ho-
ras, se deducirá de ellas el término medio del lugar.

3. Las tres observaciones barométricas diarias hechas en las
horas que corresponden a los períodos diarios, darán a conocer
las variaciones atmosféricas que importa conocer mas que el té-
rmino medio actual.

4. Las observaciones psicométricas, aunque hechas dos reces
MÉMORIAS CIENTÍFICAS.

al día, darán a conocer el estado higrométrico del aire en las horas más importantes del día.

5.- Si faltan al observador los termómetros de máxima y de mínima, algunas observaciones hechas al amanecer en las mañanas más frías del invierno, y las que hará en la segunda media hora (de 2ª a 3ª) en verano, darán a conocer los límites a que baja y sube la temperatura del lugar en todo el año.